
1

Performance Tuning on the Blackfin
Processor

2

Outline

Introduction
Building a Framework
Memory Considerations
Benchmarks
Managing Shared Resources
Interrupt Management
An Example
Summary

3

Introduction

The first level of optimization is provided by the compiler

The remaining portion of the optimization comes from
techniques performed at the “system” level

Memory management
DMA management
Interrupt management

The purpose of this presentation is to help you understand
how some of the system aspects of your application can be
managed to tune performance

4

One Challenge

How do we get from here

to here?off-chip L216220161152140816CIF

off-chip L2414720576720D-1 PAL

off-chip L24055045767044CIF

off-chip L2349920486720
D-1
NTSC

off-chip L2307200480640VGA

L2, off-chip L2101376288352CIF

L1, L2, off-chip L225344144176QCIF

L1, L2, off-chip L21228896128SQCIF

Type of Memory
Required For

Direct
Implementation

Total
PixelsRowsColumnsFormat

Unlimited memory
Unlimited processing

File-based
Power cord

Limited memory
Finite processing

Stream-based
BatteryAll formats require management

of multiple memory spaces

5

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 1 2 3 4 5 6 7 8 9

Optimization Steps

Pr
oc

es
so

r U
til

iz
at

io
n

The path to optimization
Compiler

Optimization
System

Optimization
Assembly

Optimization

let compiler
optimize

exploit
architecture features

efficient
memory layout

streamline
data flow

use specialized
instructions

The World Leader in High Performance Signal Processing Solutions

Creating a Framework

7

The Importance of Creating a “Framework”

Framework definition: The software infrastructure that moves
code and data within an embedded system

Building this early on in your development can pay big
dividends

There are three categories of frameworks that we see
consistently from Blackfin developers

8

Common Frameworks

Processing on the fly

Safety-critical applications (e.g., automotive lane departure
warning system)
Applications without external memory

Programming ease overrides performance
Programmers who need to meet a deadline

Performance supersedes programming ease
Algorithms that push the limits of the processor

9

Processing on the fly

Can’t afford to wait until large video buffers filled in external
memory

Instead, they can be brought into on-chip memory
immediately and processed line-by-line

This approach can lead to quick results in decision-based systems

The processor core can directly access lines of video in on-
chip memory.

Software must ensure the active video frame buffer is not
overwritten until processing on the current frame is complete.

10

DMA
L1 MEM

CORE

Video in

Example of “Processing-on-the-fly” Framework

Single cycle
access

Data is processed one line at a time instead of waiting for an entire frame to be collected.

480
pixels

720 pixels

33 msec frame rate
63 µsec line rate

Collision avoidance

Collision Warning

11

“Programming Ease Rules”

Strives to achieve simplest programming model at the
expense of some performance

Focus is on time-to-market
Optimization isn’t as important as time-to-market

It can always be revisited later
Provides a nice path for upgrades!

Easier to develop for both novices and experts

12

Example of “Programming Ease Rules” framework

External
Memory

DMA

L2 MEM

CORE

Video in

This programming model best matches time-to-market focused designs

DMA

DMA
Sub-image

Processed
Data

CORE
Cores split

Data
processing

13

“Performance Rules”

Bandwidth-efficient
Strives to attain best performance, even if
programming model is more complex

Might include targeted assembly routines
Every aspect of data flow is carefully planned
Allows use of less expensive processors because the
device is “right-sized” for the application
Caveats

Might not leave enough room for extra features or
upgrades
Harder to reuse

14

Example of “Performance Rules” Framework

External
Memory

DMA

1 line at a time

L1 MEM

CORE

Video in

Single cycle
access

L2 MEM

Provides most efficient use of external memory bus.

DMA

DMA
Macro block

Compressed
data

L1 MEM

CORE

Single cycle
access

15

Common Attributes of Each Model

Instruction and data management is best done up front in the
project

Small amounts of planning can save headaches later on

The World Leader in High Performance Signal Processing Solutions

Features that can be used to
improve performance

17

Now that we have discussed the background…

We will now review the concepts that will help you tune
performance

Using Cache and DMA
Managing memory
Managing DMA channels
Managing interrupts

The World Leader in High Performance Signal Processing Solutions

Cache vs. DMA

19

Cache versus DMA

The World Leader in High Performance Signal Processing Solutions

Cache

21

Configuring internal instruction memory as cache

Instruction cache provides several key benefits to increase
performance

Usually provides the highest bandwidth path into the core
For linear code, the next instructions will be on the way into the core after
each cache miss

The most recently used instructions are the least likely to be replaced

Critical items can be locked in cache, by line

Instructions in cache can execute in a single cycle

Core Way 1

Example: L1 instruction memory configured
as 4-way set-associative cache

foo1();
foo2();
foo3();

External memory

Instructions are brought into internal memory
where single cycle performance can be achieved

22

Configuring internal data memory as cache

Data cache also provides a way to increase performance
Usually provides the highest bandwidth path into the core

For linear data, the next data elements will be on the way into the core after each cache
miss

Write-through option keeps “source” memory up to date
Data written to source memory every time it is modified

Write-back option can further improve performance
Data only written to source memory when data is replaced in cache

“Volatile” buffers must be managed to ensure coherency between DMA and
cache

Core
Way 1

Example: Data brought in from a
peripheral

Volatile data

Static data

External memory

Peripheral
DMA

Cache

23

Write-back vs. Write-through

Write-back is usually 10-15% more efficient but …
It is algorithm dependent

Write-through is better when coherency between more than
one resource is required

Make sure you try both options when all of your peripherals
are running

The World Leader in High Performance Signal Processing Solutions

DMA

25

Why Use a DMA Controller?

The DMA controller runs independently of the core
The core should only have to set up the DMA and respond to interrupts

Core processor cycles are available for processing data
DMA can allow creative data movement and “filtering”

Saves potential core passes to re-arrange the data

Core DMA

Internal memory

Peripheral

Interrupt handler

Descriptor list

Buffer
Data Source

26

Using 2D DMA to efficiently
move image data

27

DMA and Data Cache Coherence

Data Cache
Volatile buffer0

Volatile buffer1

Data brought in
from a peripheralCore

Coherency between data cache and buffer filled via DMA transfer must be maintained

Cache must be “invalidated” to ensure “old” data is not used when processing most
recent buffer

Invalidate buffer addresses or actual cache line, depending on size of the buffer

Interrupts can be used to indicate when it is safe to invalidate buffer for next
processing interval

This often provides a simpler programming model (with less of a performance
increase) than a pure DMA model

Interrupt
Process

buffer

Invalidate
cache lines

associated with that
buffer

New
buffer

28

Does code fit into internal memory?

Yes

Map code
into internal

memory

Map code to
external memory

No

Turn Cache on

Is desired performance achieved?

Desired performance is
achieved

Yes

No
Lock lines with critical code
Use L1 SRAM

Is desired performance achieved?
Yes

No

Use overlay mechanism

Desired performance is
achieved

Programming effort
Increases as you move across

Instruction partitioning

29

Is the data volatile or static?

Static

Map to
cacheable
memory
locations

Will the buffers fit into
internal memory?

Volatile

Map to external memorySingle cycle access achieved

Yes No

Is DMA part of the programming model?

Turn data cache on

No

Desired performance is
achieved

No

Is buffer larger than cache size?

Invalidate using “invalidate”
instruction before read

Yes

Invalidate with direct cache line
access before read

Programming effort
Increases as you move across

Data partitioning

30

A Combination of Cache and DMA Usually Provides the
Best Performance

Instruction Cache

Main()

Func_F

Func_E

Func_D

Func_C

Func_B

Func_A

Way 4

Way 3

Way 2

Way 1

Data Cache

Way 2

Way 1

Tables

Data
Buffer 1
Buffer 2
Stack

Data SRAM

High bandwidth cache fill

Off-chip memory: Greater capacity but larger latency

High bandwidth cache fill

On-chip memory:
Smaller capacity but lower latency

High-speed DMA High-speed peripherals

Once cache is
enabled and the
DMA controller is
configured, the
programmer can
focus on core
algorithm
development.

The World Leader in High Performance Signal Processing Solutions

Memory
Considerations

32

Blackfin Memory Architecture: The Basics

Core

L1 Instruction
Memory

L1 Data Memory

External Memory

L1 Data Memory

External MemoryExternal MemoryUnified off-chip L2
Memory

Unified
on-chip L2

Configurable as
Cache or SRAM

Single cycle to
access

10’s of Kbytes

Several cycles to access

100’s of Kbytes

Several system cycles to access

100’s of Mbytes

600MHz

600MHz

300MHz

<133MHz

On-chip

Off-chip

DMA

33

Instruction and Data Fetches

In a single core clock cycle, the processor can
perform

One instruction fetch of 64 bits and either …
Two 32-bit data fetches or
One 32-bit data fetch and one 32-bit data store

The DMA controller can also be running in parallel
with the core without any “cycle stealing”

34

Partitioning Data – Internal Memory Sub-Banks

Multiple accesses can be made to different internal sub-banks in the
same cycle

Take advantage of the sub-bank architecture!

Core fetch

Core fetch

DMA
DMA

Optimized

Core and DMA operate in
harmony

Buffer0
Buffer1

Core fetch

Core fetch

DMA

DMA

Unused

Buffer2
Coefficients

Unused

Un-optimized

DMA and core conflict when
accessing sub-banks

Buffer0

Coefficients

Buffer1

Buffer2

DMA

35

L1 Instruction Memory 16KB Configurable
Bank

Instruction

DCB
- DMA

4KB
sub-bank

EAB
– Cache Line Fill

4KB
sub-bank

4KB
sub-bank

4KB
sub-bank

16 KB cache
• Least Recently Used

replacement keeps frequently
executed code in cache

• 4-way set associative with
arbitrary locking of ways and
lines

16 KB SRAM
• Four 4KB single-ported

sub-banks

• Allows simultaneous
core and DMA accesses
to different banks

36

L1 Data Memory 16KB Configurable Bank
Block is Multi-ported when:
Accessing different sub-bank

OR
Accessing one odd and one even

access (Addr bit 2 different)
within the same sub-bank.

Data 1

Data 0

4KB
sub-bank

4KB
sub-bank

4KB
sub-bank

4KB
sub-bank

• When Used as Cache
– Each bank is 2-way

set-associative
– No DMA access
– Allows simultaneous

dual DAG access

• When Used as SRAM
– Allows simultaneous

dual DAG and DMA
access

DCB
- DMA

EAB
– Cache Line Fill

37

Partitioning Code and Data -- External Memory Banks
Row activation within an SDRAM consumes multiple system clock
cycles
Multiple rows can be “active” at the same time

One row in each bank
Code

Row activation cycles are spread
across hundreds of accesses

Instruction
Fetch Four

16MByte
Banks
internal to
SDRAM

DMA

DMA

External
Bus

Video Frame 1

Video Frame 0

Ref Frame

Code

Video Frame 0

Row activation cycles are
taken almost every access

Instruction
Fetch

DMA

DMA

External
Bus

Unused

Video Frame 1

Ref Frame

Unused

External MemoryExternal Memory

Take advantage of all four open rows in external
memory to save activation cycles!

The World Leader in High Performance Signal Processing Solutions

Benchmarks

39

Important Benchmarks
Core accesses to SDRAM take longer than accesses made by the
DMA controller

For example, Blackfin Processors with a 16-bit external bus
behave as follows:

16-bit core reads take 8 System Clock (SCLK) cycles
32-bit core reads take 9 System Clock cycles

16-bit DMA reads take ~1 SCLK cycle
16-bit DMA writes take ~ 1 SCLK cycle

Bottom line: Data is most efficiently moved with the DMA
controllers!

The World Leader in High Performance Signal Processing Solutions

Managing Shared Resources

41

Core A is higher priority than Core B Programmable priority

Core has priority to external bus
unless

DMA is urgent*

You are able to program this so
that the DMA has a higher

priority than the core

* “Urgent” DMA implies data
will be lost if access isn’t granted

External Memory Interface: ADSP-BF561

42

Priority of Core Accesses and the DMA Controller
at the External Bus

A bit within the EBIU_AMGCTL register can be used to
change the priority between core accesses and the DMA
controller

43

Peripheral
FIFO

DMA FIFO
Full

or

Peripheral

When the DMA FIFO is full and the
Peripheral has a sample to send

What is an “urgent” condition?

Peripheral
FIFO

DMA FIFO
Empty

Peripheral

External memoryExternal memory

When the DMA FIFO is empty and the
Peripheral is transmitting

44

Bus Arbitration Guideline Summary: Who wins?
External memory (in descending priority)

Locked Core accesses (testset instruction)
Urgent DMA
Cache-line fill
Core accesses
DMA accesses

We can set all DMA’s to be urgent, which will elevate the
priority of all DMAs above Core accesses

L1 memory (in descending priority)
DMA accesses
Core accesses

The World Leader in High Performance Signal Processing Solutions

Tuning Performance

46

Managing External Memory

Transfers in the same direction are more efficient than intermixed
accesses in different directions

DMA
External
Memory

External
Bus

Core

Group transfers in the same direction to reduce number of
turn-arounds

47

Improving Performance

DMA Traffic Control improves system performance
when multiple DMAs are ongoing (typical system)

Multiple DMA accesses can be done in the same “direction”
For example, into SDRAM or out of SDRAM

Makes more efficient use of SDRAM

48

DEB_Traffic_Period has the biggest impact on improving performance

The correct value is application dependent but if 3 or less DMA
channels are active at any one time, a larger value (15) of
DEB_Traffic_Period is usually better. When more than 3 channels are
active, a value closer to the mid value (4 to 7) is usually better.

DMA Traffic Control

The World Leader in High Performance Signal Processing Solutions

Priority of DMAs

50

Priority of DMA Channels

Each DMA controller has multiple channels

If more than one DMA channel tries to access the controller,
the highest priority channel wins

The DMA channels are programmable in priority

When more than one DMA controller is present, the priority of
arbitration is programmable

The DMA Queue Manager provided with System Services
should be used

51

Interrupt Processing

52

Common Mistakes with Interrupts

Spending too much time in an interrupt service routine
prevents other critical code from executing

From an architecture standpoint, interrupts are disabled once an
interrupt is serviced

Higher priority interrupts are enabled once the return address (RETI
register) is saved to the stack

It is important to understand your application real-time
budget

How long is the processor spending in each ISR?
Are interrupts nested?

53

Programmer Options

Program the most important interrupts as the highest priority

Use nesting to ensure higher priority interrupts are not locked
out by lower priority events

Use the Call-back manager provided with System Services
Interrupts are serviced quickly and higher priority interrupts are
not locked out

The World Leader in High Performance Signal Processing Solutions

A Example

55

Video Decoder Budget

What’s the cycle budget for real-time decoding?
(Cycle/pel * pixel/frame * frame/sec) < core frequency
⇒Cycle/pel < (core frequency / [pixel/frame * frame/sec])
⇒Leave at least 10% of the MIPS for other things (audio, system,

transport layers…)
For D-1 video: 720x480, 30 frame/sec (~10M pel/sec)
Video Decoder budget only ~50 cycle/pel

What’s the bandwidth budget?
([Encoded bitstream in via DMA] + [Reference frame in via DMA] + [Reconstructed MDMA Out]

+ [ITU-R 656 Out] + [PPI Output]) < System Bus Throughput
Video Decoder Budget ~130 MB/s

56

Video Decoders

1011001001…

Packet Buffer Display Frames

External Memory

•Decode

Signal processing

Ref Frames

Internal L1 Memory

•Interpolation
•Uncompensate

•Format
Conversion

Input Bitstream

57

Data Placement

Large buffers go in SDRAM

•Packet Buffer (~ 3 MB)
•4 Reference Frames (each 720x480x1.5 bytes)
•8 Display Frames (each 1716x525 bytes)

Small Buffers go in L1 memory

•VLD Lookup Tables
•Inverse Quantization, DCT, zig-zag, etc.
•Temporary Result Buffers

58

Data Movement (SDRAM to L1)

Reference Frames are 2D in SDRAM
Reference Windows are linear in L1

Y

U

V

SDRAM L1

2D-to-1D DMA used to bring in
reference windows for interpolation

59

Data Movement (L1 to SDRAM)
All temporary results in L1 buffers are stored linearly.
All data brought in from SDRAM are used linearly.

Decoded Macroblock

1D-to-2D DMA transfers decoded macroblock to SDRAM to build reference
frame.

L1 SDRAM

60

Bandwidth Used by DMA
Input Data Stream 1 MB/s
Reference Data In 30 MB/s
In Loop Filter Data In 15 MB/s
Reference Data Out 15 MB/s
In Loop Filter Data Out 15 MB/s
Video Data Out 27 MB/s

•Calculations based on 30 frames per second.

Be careful not to simply add up the bandwidths!

Shared resources, bus turnaround, and concurrent activity
all need to be considered

61

Summary

The compiler provides the first level of optimization

There are some straightforward steps you can take up front
in your development which will save you time

Blackfin Processors have lots of features that help you
achieve your desired performance level

Thank you

