
1

About this Module

This module introduces concepts, tools and approaches to
optimising Blackfin C applications. It highlights the problems
and opportunities that can lead to potentially significant
performance improvements.

The course will look at the available tools, such as the
Statistical profiler and then review techniques for handling
Control code, DSP kernel code and memory, finishing with an
example. The material covers a wide range from automatic
optimisation to detailed rewriting of C expressions.

2

Module Outline
Concepts and Tools

Concerns of C : Advantages & problems
Useful tools
Pipelines and stalls

Tuning DSP Kernels
Tuning techniques
Advanced loop optimisation

Tuning Control code
Introduction to optimising control code
Advanced control code optimisation

Blackfin Memory Performance
Memory timing
Optimising for speed or space

Examples
Data structure
Whole application example

3

Concepts and Tools

4

Why use C?

Advantages:
C is much cheaper to develop. (encourages experimentation)
C is much cheaper to maintain.
C is comparatively portable.

Disadvantages:
ANSI C is not designed for DSP.
DSP processor designs usually expect assembly in key areas.
DSP applications continue to evolve. (faster than ANSI Standard C)

5

How to go about increasing C performance

(1) Work at high level first
most effective -- maintains portability

improve algorithm
make sure it’s suited to hardware architecture
check on generality and aliasing problems

(2) Look at machine capabilities
may have specialised instructions (library/portable)
check handling of DSP-specific demands

(3) Non-portable changes last
in C?
in assembly language?
always make sure simple C models exist for verification

Usually the process of performance tuning is a specialisation of the
program for particular hardware. The program may become larger,
more complex and less portable.

6

Uniform C computational model, BUT….
Missing operations provided by software emulation (floating
point!)
Assumes Large flat memory model
C is more machine-dependent than you might think

for example: is a “short” 16 or 32 bits?
Can be a poor match for DSP – accumulators? SIMD?
Fractions?
Not really a mathematical focus. Systems programming
language
Machine’s Characteristics will determine your success.

What is the computational bandwidth and throughput?
Macs? Bus capacity? Memory access times?

C programs can be ported with little difficulty.

But if you want high efficiency, you can’t ignore the
underlying hardware.

7

Two kinds of “Optimisation”.
Use the Optimiser and Optimise the C!

(1) Automatic compiler optimisation.
Up to 20 times faster that non-optimised code in DSP kernels
Sliding scale from control code to DSP inner loop
Non-optimized code is only for debugging the algorithm

But Note: Optimising Compiler has Limited Scope
will not make global changes
will not substitute a different algorithm
will not significantly rearrange data or use different types
Correctness as defined in the language is the priority

(2) Elaborate the “out of the box” portable C, to “optimised C”.
Annotations: #pragmas, built-in functions, Memory qualifiers – const,
restrict, volatile, bank
Amendments: Targeted rewrites of the C statements, asm() statements

8

Un-Optimized Code for Blackfin

for (i = 0; i < 150; i++) {
dotp += b[i] * a[i];
sqr += b[i] * b[i];

}

[FP+ -8] = R7; ._P1L1:
R3=[FP+ -8];
R2 = 150 (X);
CC = R3 < R2;
IF !CC JUMP ._P1L3 ;
R3 <<= 1;
P2 = R3 ;
P0=[FP+ 8];
P0 = P0 + P2;
R1=W[P0+ 0] (X);
R0=[FP+ -8];
R0 <<= 1;
P1 = R0 ;
P2=[FP+ 12];
P2 = P2 + P1;
R7=W[P2+ 0] (X);
R7 *= R1 ;
R1=[FP+ -4];
R0 = R1 + R7;

[FP+ -4] = R0;
R3=[FP+ -8];
R3 <<= 1;
P0 = R3 ;
P1=[FP+ 12];
P1 = P1 + P0;
R1=W[P1+ 0] (X);
R7=[FP+ -8];
R7 <<= 1;
P2 = R7 ;
P1=[FP+ 12];
P1 = P1 + P2;
R3=W[P1+ 0] (X);
R3 *= R1 ;
R1=[FP+ 16];
R7 = R1 + R3;
[FP+ 16] = R7;
R3=[FP+ -8];
R3 += 1;
[FP+ -8] = R3;
JUMP ._P1L1;

[FP+ -8] = R7; ._P1L1:
R3=[FP+ -8];
R2 = 150 (X);
CC = R3 < R2;
IF !CC JUMP ._P1L3 ;
R3 <<= 1;
P2 = R3 ;
P0=[FP+ 8];
P0 = P0 + P2;
R1=W[P0+ 0] (X);
R0=[FP+ -8];
R0 <<= 1;
P1 = R0 ;
P2=[FP+ 12];
P2 = P2 + P1;
R7=W[P2+ 0] (X);
R7 *= R1 ;
R1=[FP+ -4];
R0 = R1 + R7;

[FP+ -4] = R0;
R3=[FP+ -8];
R3 <<= 1;
P0 = R3 ;
P1=[FP+ 12];
P1 = P1 + P0;
R1=W[P1+ 0] (X);
R7=[FP+ -8];
R7 <<= 1;
P2 = R7 ;
P1=[FP+ 12];
P1 = P1 + P2;
R3=W[P1+ 0] (X);
R3 *= R1 ;
R1=[FP+ 16];
R7 = R1 + R3;
[FP+ 16] = R7;
R3=[FP+ -8];
R3 += 1;
[FP+ -8] = R3;
JUMP ._P1L1;

Loop control
increment, test & exit

Load a[I]

Load b[I]

sqr += b[I] * b[I]

dotp += b[I]* a[I]

Load b[I]

Load b[I]

Increment I

Repeat Loop

LSETUP (._P1L2 , ._P1L3-8) LC0=P1;

._P1L2:
A1+= R0.H*R0.H, A0+= R0.L*R0.H (IS)

|| R0.L = W[I1++]
|| R0.H = W[I0++];

._P1L3:

LSETUP (._P1L2 , ._P1L3-8) LC0=P1;

._P1L2:
A1+= R0.H*R0.H, A0+= R0.L*R0.H (IS)

|| R0.L = W[I1++]
|| R0.H = W[I0++];

._P1L3:

The Optimised code (-O)

- easier to understand!

The source code:

Unoptimised assembly:

9

Direct your effort:
Use the Statistical Profiler.

Statistical profiling samples the program counter of the
running application and builds up a picture of where it
spends its time
Completely non-intrusive – no tracing code is added
Completely accurate – shows all effects, including stalls, from
all causes

Do not assume that you know where an application spends
its time

Measure it: Intuition is notoriously bad here.

80 – 20 rule: 80% of anything is usually non-critical.

10

VDSP++ Statistical Profiler
Benchmark by function, then drill down
Left pane shows line by line activity

Linear Profiler is also available in the simulator

11

A tip: Use Mixed Mode.
Statistical results at the instruction level.

Costly instructions are easy to spot.

Could mean pipeline or multi-cycle instruction or memory cost.

Due to pipeline, costs may be offset from adjacent instruction.

<- Pipeline stalls

<- Transfer of control

12

Bear in mind the Length of the Pipeline.

Take care on conditionally branching code. (0, 4 or 8 stall cycles)
sometimes branches can be avoided by using other techniques

Take care with Table lookup and structure depth.
p->q->z is inefficient to access. (3 stalls per indirection)
(And also hard on pointer analysis. What data does this reference?)

Is there a latency associated with computations?
(results not ready on next cycle)

C Compiler will do its best to schedule other code into stall cycles,
but inherent hardware properties will always influence the outcome.

EE197 note details Blackfin stalls.

13

VDSP++ Pipeline Viewer (SIMULATION ONLY)

Accessed through View->Debug Windows->Pipeline Viewer.

Press <Ctrl> and hover over stall.

Step through interesting code sequences and look out for the
slash of yellow that means stalls.

14

Tuning Digital Signal Processing
Kernels

15

An efficient floating Point Emulation

Note: The BF Square root uses a new algorithm.

The –fast-fp BF implementation relaxes strict IEEE
checking of NAN values.

Smaller is better in cycles.
0.5170378158pow
0.380582666atan2
0.357121895atan
1.0322318Square Root
0.544192170Cos
0.546652271Sine
0.3945256Divide
0.5329161Subtract
0.5264127Add
0.424193Multiply

ieee-fpfast-fp

ratioBF533BF533

VDSP++ 4.0

Measurement in cycles

16

Wide support for Fractional processing

The Blackfin instruction set includes a number of operations
which support fractional (or fract) data. The instructions
include:

saturating MAC/ALU/SHIFT instructions
MAC shift correction for fractional inputs

The compiler and libraries provide support for fractional
types:

fractional builtins
fract types fract16 and fract32
ETSI
C++ fract class

Fractional arithmetic is a hundred times faster than floating!

17

Portable C expressing fractions

void vec_mpy1(short y[], const short x[], short scaler)
{

int i;
for (i = 0; i < 150; i++)

y[i] += ((scaler * x[i]) >> 15);
}

It is portable and the compiler is going to understand this, and generate
optimal code for 16 bit fractions. (it will assume saturation)

But…..
C does not specify what happens on signed overflow. Some programs
expect saturation, some expect to wrap to zero.
Unsigned variables are stricter than signed.
You do not have an extended precision accumulator type, so you cannot
assume 40 bit precision. Which implies controlling range throughout the
loop.
More complex C expressions may stress the compilers ability to recognise
what you are getting at. So the intrinsics offer a more precise solution.

18

Explicit fixed point programming

There is a comprehensive array of 16 bit intrinsic functions.
(detailed in Visual DSP 4.0\Blackfin\include\)

You must program using these explicitly.
Intrinsics are 'inlined' and are not function calls
Optimiser fully understands built-ins and their effects

#include <fract.h>
fract32 fdot(fract16 *x, fract16 *y, int n)
{

fract32 sum = 0;
int i;
for (i = 0; i < n; i++)

sum = add_fr1x32(sum, mult_fr1x32(x[i], y[i]));
return sum;

}

19

ETSI Builtins – fully optimised Fractional
arithmetic to a standard specification

European Telecommunications Standards Institute's fract functions
carefully mapped onto the compiler built-ins.

add() sub() abs_s() shl()
shr() mult() mult_r() negate()
round() L_add() L_sub() L_abs()
L_negate() L_shl() L_shr() L_mult()
L_mac() L_msu() saturate() extract_h()
extract_l() L_deposit_l() L_deposit_h() div_s()
norm_s() norm_l() L_Extract() L_Comp()
Mpy_32() Mpy_32_16()

Immediate optimisation of ETSI standard codecs.
Highly recommended!

20

Pointers or Arrays?
Arrays are easier to analyse.
void va_ind(int a[], int b[], int out[], int n) {

int i;
for (i = 0; i < n; ++i)

out[i] = a[i] + b[i];
}

Pointers are closer to the hardware.
void va_ptr(int a[], int b[], int out[], int n) {

int i,
for (i = 0; i < n; ++i)

*out++ = *a++ + *b++
}

Which produces the fastest code?

Often no difference.
Start using array notation as easier to understand.
Array format can be better for alias analysis in helping to ensure
no overlap.
If performance is unsatisfactory try using pointers.

21

Loops
It is considered a good trade off to slow down loop prologue and epilogue
to speed up loop.
Make sure your program spends most of its time in the inner loop.
The optimizer basically “works by unrolling loops”.

Vectorisation
Software pipelining

What is software pipelining?
Reorganizing the loop in such a way that each iteration of software-pipelined code
is made from instructions of different iterations of the original loop

Simple MAC loop:
load, multiply/accumulate, store

CYCLE 1 2 3 4 5 6100

L1 M1 S1

L2 M2 S2

L3 M3 S3

L4 M4 S4
………………

22

Effects of Vectorisation and Software
Pipelining on Blackfin

Simple code generation: 1 iteration in 3 instructions
R0.L = W[I1++]
R1.L = W[I0++];
A1+= R0.L*R1.L;

Vectorised and unrolled once: 2 iterations in 3 instructions

R0 = [I1++]
R1 = [I0++]
A1+= R0.H*R1.H, A0+= R0.L*R1.L (IS)

Software pipeline: 2 iterations in 1 instruction
R0 = [I1++] || R1= [I0++];

LSETUP (._P1L2 , ._P1L3-8) LC0=P1;
.align 8;

._P1L2:

A1+= R0.H*R1.H, A0+= R0.L*R1.L (IS) || R0 = [I1++] || R1= [I0++];
._P1L3:

A1+= R0.H*R1.H, A0+= R0.L*R1.L (IS);

23

Do not unroll inner loops yourself

Good - compiler unrolls to use both compute blocks.
for (i = 0; i < n; ++i)

c[i] = b[i] + a[i];
Bad - compiler less likely to optimise.
for (i = 0; i < n; i+=2) {

xb = b[i]; yb = b[i+1];
xa = a[i]; ya = a[i+1];
xc = xa + xb; yc = ya + yb;
c[i] = xc; c[i+1] = yc;

}
OK to unroll outer loops.

24

The original loop (good)

float ss(float *a, float *b, int n){

float sum = 0.0f;
int i;
for (i = 0; i < n; i++)
{
sum += a[i] + b[i];
}
return sum;
}

float ss(float *a, float *b,
int n) {

float ta, tb , sum = 0.0f;
int i = 0;
ta = a[i]; tb = b[i];
for (i = 1; i < n; i++) {

sum += ta + tb;
ta = a[i]; tb = b[i];

}
sum += ta + tb;
return sum;

}

A pipelined loop (bad)

Do not software pipeline loops yourself.

25

Avoid loop carried dependencies
Bad: Scalar dependency.

for (i = 0; i < n; ++i) x = a[i] - x;
Value used from previous iteration. So iterations cannot be
overlapped.

Bad: Array dependency.
for (i = 0; i < n; ++i) a[i] = b[i] * a[c[i]];

Value may be from previous iteration. So iterations cannot be
overlapped.

Good: A Reduction.
for (i = 0; i < n; ++i) x = x + a[i];

Operation is associative. Iterations can be reordered to calculate
the same result.

Good: Induction variables.
for (i = 0; i < n; ++i) a[i+4] = b[i] * a[i];

Addresses vary by a fixed amount on each iteration. Compiler can
see there is no data dependence.

26

You can experiment with Loop structure

Unify inner and outer Loops.
May make loop too complex, but optimiser is better focused.

Loop Inversion. - reverse nested loop order.

Unify sequential loops
reduce memory accesses – can be crucial when dealing with external
memory.

− And remember you can code explicit built-ins to force
vectorisation.

e.g.. fract2x16 mult_fr2x16(fract2x16 f1,fract2x16 f2)

27

Failure to engage Hardware Loop.

The LSETUP zero overhead hardware loop is very effective.
And signals a well understood loop.

Reasons for not getting the desired HW loop from the
compiler include:

(1) There are only two, so only the two deepest nested cycles.
(2) Calls to complex or unknown functions in the loop.

Calls to simple, loop-less functions are accepted if the
function is completely visible to the compiler.

(3) There must be no transfer of control into the loop other than
the normal entry.
And additional transfers of control out of the loop, while
accepted, lower efficiency.

28

Vectorisation
Simultaneous operations on a number of adjacent data elements.
But, programs written in serial, one-at-a-time form

compiler finds opportunities for many-at-a-time
Valuable on architectures with wide data paths or parallel operations

These Factors Make Vectorisation Difficult
Non-sequential Memory References

vectorisation and SIMD must be based on sequential data
sometimes data layout can be modified, or algorithm changed

Uncertain alignment of data
memory references usually must be naturally aligned
pointers, function parameters might have any value

Uncertain Iteration Counts
vectorised loops count in larger increments: 2, 4, 8
more code required to deal with run-time-known value

Possible Aliasing of Data
Vectorisation cannot occur if there is a question about inputs and outputs
affecting each other

29

Word align your data

32-bit loads help keep compute units busy.
32-bit references must be at 4 byte boundaries.
Top-level arrays are allocated on 4 byte boundaries.

Only pass the address of first element of arrays.
Write loops that process input arrays an element at a time.
Nested loops - make sure inner loop is word aligned.

The Blackfin does not support odd aligned data access. If the
compiler thinks that your 2 byte or 4 byte data might stray
across odd boundaries, then it will start planting alternate
loop forms and testing code to handle misaligned access.
While helpful, this is better avoided!

30

Construct Arrays with high visibility.
A common performance flaw is to construct a 2D array by a
column of pointers to malloc’ed rows of data. This allows
complete flexibility of row and column size and storage.
But it kills the optimiser which no longer knows if one row
follows another and can see no constant offset between the
rows.

Think about the data layout.
Arrange for 32 bit loads Example: Complex Data.

short Real_Part[N];
short Imaginary_Part [N];

Wrong! Two loads required.

short Complex [N*2];
One 32 bit load sufficient to load both parts.

31

Watch Memory Access Patterns
Facilitate 32 bit and sequential access.

for (i=0; i<NC; i++) { // good
for (j=0; j<NC; j++) {

int sum = 0.0;
for (k=0; k<NUM_SAMPS; k++)

sum += Input[i*NC + k] * Input[i*NC + k];
Cover[i*NC + j] = sum / NUM_SAMPS;

}
}

for (i=0; i<NC; i++) { // good
for (j=0; j<NC; j++) {

int sum = 0.0;
for (k=0; k<NUM_SAMPS; k++)

sum += Input[i*NC + k] * Input[i*NC + k];
Cover[i*NC + j] = sum / NUM_SAMPS;

}
}

for (i=0; i<NC; i++) { // bad
for (j=0; j<NC; j++) {

int sum = 0.0;
for (k=0; k<NUM_SAMPS; k++)

sum += Input[k*NC + i] * Input[k*NC + i];
Cover[i*NC + j] = sum / NUM_SAMPS;

}
}

for (i=0; i<NC; i++) { // bad
for (j=0; j<NC; j++) {

int sum = 0.0;
for (k=0; k<NUM_SAMPS; k++)

sum += Input[k*NC + i] * Input[k*NC + i];
Cover[i*NC + j] = sum / NUM_SAMPS;

}
}

Original form
moves through

memory
jumping “NC’

words at a time
-- cannot
vectorize

Original form
moves through

memory
jumping “NC’

words at a time
-- cannot
vectorize

Need to be careful how program sweeps thru memory

32

Aliasing: A prime cause of poor performance

Watch Pointers which come from outside :- Arguments, globals.
Watch Pointers which serve several purposes.
(alias analysis is “flow free”)

Watch Implicit pointers – Reference parameters – esp. arrays.
Some of this is experience. Look at any pointers.
Some comes from code inspection: why were expected
optimisations inhibited?

Avoid use of global variables in application code
Ultimately hurts Maintainability and Performance
Compiler optimisations are often blocked by global-ness

Eg. Don't use global scalars inside loops (or as loop exit
conditions), as the compiler can't tell if a write through an
arbitrary pointer will clobber that global.

33

Inter-procedural Analysis : -ipa

To produce the best possible code for a function the
optimiser needs information about:

Data alignment
Possible argument interference
Number of iterations

First compilation uncovers information.
Compiler called again from link phase if procedures will
benefit from re-optimisation.
Inter-procedural alias analysis associates pointers with
sets of variables they may point to.
Weakness: A control-flow independent analysis.

(context-free)

34

#pragma no_alias
#pragma no_alias

for (i=0; i < n; i++)
out[i] = a[i] + b[i];

No load or store in any iteration of the loop has the same address
as any other load or store in any other iteration of the loop. If this
is untrue, the program will give incorrect answers.
Or use Qualifier restrict. “This pointer cannot create an alias”.

#pragma vector_for
#pragma vector_for
for (i=0; i<100; i++)

a[i] = b[i];

The vector_for pragma notifies the optimiser that it is safe to
execute two iterations of the loop in parallel.

35

#pragma all_aligned
On Blackfin this asserts that the pointers are word aligned.

Takes an optional argument (n) which can specify that the pointers are
aligned after n iterations.

#pragma all_aligned(1)

would assert that, after one iteration, all the pointer induction variables of
the loop are word aligned on Blackfin.

__builtin_aligned(pointer,4); // aligned on word(32-bit) boundary.

Executable statement, not #pragma, so when used on parameter arrays,
must come after declarations in receiving function.

Array alignment on Blackfin

#pragma different_banks
Asserts that every memory access in the loop goes to a different L1
memory bank.

36

#pragma loop_count

example
int i;
#pragma loop_count(24,48,8)
for (i=0; i<n; i++)
sum += a[i] * b[i];

minimum trip count – used
to decide to omit loop
guards
maximum trip count – used
to decide it it is worth
slowing down prologue and
epilogue for a faster loop?
trip modulo – used during
software pipelining and
vectorisation, does compiler
need to worry about odd
number of iterations?

37

Volatile is an important tool
Volatile is essential for hardware or interrupt-related data
Some variables may be accessed by agents not visible to compiler.

accessed by interrupt routines
set or read by hardware devices

‘volatile’ attribute forces all operations with that variable to be done
exactly as written

variable is read from memory each time
variable is written back to memory each time
The exact order of events is preserved.

Optimiser must know the effect of each operation.
Missing a Volatile qualifier is the largest single cause of Support

Requests now!

Writing const short *p, instead of short *p, when p accesses const
data is something that helps our alias analysis quite a lot.

And the opposite “const” can help too.

38

Circular addressing
A[i%n]

The compiler now attempts to treat array references of the form array[i%n] as
circular buffer operations.

-force-circbuf can help the compiler to accept the safety of a circular buffer access.

Explicit circular addressing of an array index:
long circindex(long index, long incr, unsigned long nitems)

Explicit circular addressing on a pointer:
void * circptr(void *ptr, long incr, void *base, unsigned long buflen)

Automatic Bit reversed addressing
Reduction of multiple statements of C to single complex instructions.
Eg BitMux, Viterbi.

Tricks that Compilers still miss

39

Know your vocabulary.
Example: The count_ones intrinsic

Original Problem:
U16 parityCheck(U32 dataWord[], const S32 nWords) {
S32 i,j; U32 accParity=0;
for(j=0; j < nWords; j++){
for (i=0; i < 32; i++){

if (((dataWord[j] >> i) & 0x0001) == 1)
accParity++; }}

return((accParity & 0x00000001) ? 1 : 0);
}

Hardware has a special instruction to count bits.
for(j=0; j < nWords; j++)

accParity += count_ones(dataWord[j]);
return((accParity & 0x0001)?1:0);

Sixty times faster!

40

The inline asm()
ASMS() used to be a hard barrier to all
optimisation.

Now when the asm uses specific
registers or touches memory directly. It
can tell the compiler what it “clobbers”.
The fourth field in the asm statement
specifies the “clobbered” registers, or
“memory”.

Notice that “memory” is a rather vague
assertion.

This is a big improvement, but an asm()
is still dangerous and no match for a
compiler intrinsic. The compiler
understands intrinsics fully.

Only use asm() when you need a very
specific capability and avoid inner loops
if you can.

inline int32_t MULT32(int32_t x,
int32_t y) {

ogg_int32_t hp;
asm volatile (\
" a1 = %1.l*%2.l(fu); \n \
a1 = a1 >> 16; \n \
a1+= %1.h*%2.l(m,is); \n \
a1+= %2.h*%1.l(m,is); \n \
a1 = a1>>>16; \n \
%0 = (a1+= %1.h*%2.h)(is);": \
"=O"(hp): \
"d"(x),"d"(y): \
"a1", "astat");

return hp;
}

Example of inline asm.
A widening multiply.
(fract 32*32 using 16 bit
operations).

And also for C functions: #pragma regs_clobbered string
Specify which registers are modified (or clobbered) by that function.

41

Tuning Control Code

42

Optimise Conditionals with PGO
“Profile Guided Optimisation” : -Pguide

Simulation produces execution trace.
Use the compiled simulator (hundreds of times faster) than conventional
simulator.
Problem: If what matters to you is worst case, not majority case, then
choose training data appropriately.

Then re-compile program using execution trace as guidance.
Compiler now knows result of all conditional operations.

The payoff is significant: There are eight stalls to be saved.
The compiler does not aim for a static prediction – that still costs four
stalls. The compiler goes all out for zero delay.

The compiler will re-arrange everything to maximise drop
through on conditional jumps. That’s optimal – zero cycle
delays. So your code will look completely different!

43

Or Manual guidance

You can guide the compiler manually with:

expected_true()
expected_false().

For instance,
If (expected_false(failure status)) {

< Call error routine >
}
Will lift very seldom executed error handling code out of main

code stream. Execution will drop through to next item after
testing condition.

44

Replace Conditionals with Min,Max,Abs.

k = k-1;
if (k < -1)

k = -1;

k = k-1;
if (k < -1)

k = -1;
k = max (k-1, -1);k = max (k-1, -1);

R0 += -1;
R1 = -1;
R0 = MAX (R1,R0);

Simple bounded
decrement

Programming
“trick”

The compiler will often do this automatically for you, but
not always in 16 bit cases.

Avoid jump instruction
latencies and simplifying

control flow helps
optimisation.

BF ISA Note: Min and Max are for signed values only.

45

Removing conditionals 2

Duplicate small loops rather than have a conditional in a
small loop.

Example for {
if { ….. } else {…..}

}

=> if {
for {…..}

} else {
for {…..}

}

46

Removing Conditionals 3
Predicated Instruction Support

The blackfin predicated instruction support takes the form of:
IF (CC) reg = reg.

Much faster than a conditional branch. (1 cycle) but limited.
Recode to show the compiler the opportunity.
For instance – consider speculative execution.

if (A) X = EXPR1 else X = EXPR2;
Becomes:

X = EXPR1; IF (!A) X = EXPR2;
Or X=EXPR1; Y=EXPR2; if (!A) X=Y;

Generally,speculation is dangerous for compilers. Help it out.
Eg. Compiler will not risk loading off the end of a buffer for
fear of address errors unless you code –extra-loop-loads.

47

Removing Conditionals 4

Is approach suitable for a pipelined machine

sum = 0;
for (I=0; I<NN; I++) {
if (KeyArray[val1][10-k+I] == '1')

sum = sum + buffer[I+10]*64;
else

sum = sum - buffer[I+10]*64;
}

Faster Solution removes conditional branch.
Multiplication is fast: let KeyArray hold +64 or -64
sum = 0;
for (I=0; I<NN; I++)

sum += buffer[I+10] * KeyArray[val1][10-k+I];

Compiler is not able to make this kind of global
change

48

Avoid Division.

Division by power of 2 rendered as right shift – very efficient.
Unsigned Divisor – one cycle. (Division call costs 35 cycles)
Signed Divisor – more expensive. (Could cast to unsigned?)

x / 2^n = ((x<0) ? (x+2^n-1) : x) >> n // Consider –1/4 = 0!

Example: signed int / 16
R3 = [I1]; // load divisor
CC = R3 < 0; // check if negative
R1 = 15; // add 2^n-1 to divisor
R2 = R3 + R1;
IF CC R3 = R2 ; // if divisor negative use addition

result
R3 >>>= 4; // to the divide as a shift

Ensure compiler has visibility. Divisor must be unambiguous.

There are no divide instructions – just supporting instructions.
Floating or integer division is very costly
Modulus(%) also implies division.
Get Division out of loops wherever possible.

Classic trick: - power of 2 shift.

49

There are two implementations of Division.
On a Blackfin, the cost depends on the range of the inputs.

(1) Can use Division primitives Cost ~ 40 cycles
(Loosely speaking, the result and divisor fit in 16 bits.)

(2) Bitwise 32 bit division Cost ~ 400 cycles

Consider numeric range when dividing.

The Hardware loop constructs require an iteration count.

for (I = start; I < finish; I += step)
compiler plants code to calculate:
iterations = (finish-start) / step

Division can be created by For loops.

50

Use the laws of Algebra

A customer benchmark compared ratios coded as:
if (X/Y > A/B)

Recode as:
if (X * B > A * Y)

Another way to lose divisions!

Problem: possible overflow in fixed point.

The compiler does not know anything about the real data
precision. The programmer must decide. For instance two 12
bit precision inputs are quite safe. (24 bits max on multiplication.)

51

Dreg or Preg?

The Blackfin design saves time and power by associating
registers with functional units. That splits the register set
into Dregs and Pregs. But it costs three stalls to transfer
from Dreg to Preg. So you want to avoid chopping back and
forth.

Avoid address arithmetic that is not supported by Pregs and
you will avoid transfers from Preg to Dreg and back.

For instance. Multiplication except by 2 or 4 has to be done
outside the DAG. So indexing an odd sized struct array is OK
using auto-increment, but arbitrary element addressing may
involve the Dregs.

52

Convergent: DSP and micro-controller
- Integer size?
16 bit for arrays of data in DSP style calculations.

32 bits for “control” variables in micro-controller code.

The ISA is not symmetric for 8, 16 and 32 bits.
Example: Comparison can only be done in 32 bits.
So 8 bit or 16 bit conditions have to be preceded by coercions,

which also consume more registers. The compiler will optimise
away as much of this as possible, but best is to make control
variables 32 bits.
Especially For loop control variables.

53

Varying multiplication cost.

32 bit multiplication takes three cycles.
R0 *= R1;

You can do two 16 bit multiplications in one cycle.
And you can load and store in the same cycle.
That’s up to six times the throughput.
Eg. A1+= R0.H*R0.H, A0+= R0.L*R0.H (IS)

|| R0.L = W[I1++]
|| R0.H= W[I0++];

Be careful to specify 16 bit inputs and outputs to avoid
unwanted 32 bit multiplication.

Address arithmetic is a common source of 32 bit mults.

54

Function Inlining (-Oa)
and The “inline” qualifier

Inlining functions (inserting body code at point of call) :
Saves call instruction (multi-cycle)
Saves return (multi-cycle)
Saves construction of parameters and return values.
Gives the optimiser greater visibility.
Gives the optimiser more instructions to schedule.

But code size increases.

Automatic: Tick Function inlining box. -Oa

Manual: Mark small functions with the “inline” qualifier.

55

Zero trip loops

C definition of a FOR loop is Zero or more iterations.
Blackfin HW loop is defined as One or more iterations.
Result is guard code before loops jumping around if zero trip.

R7=[FP+ -8] || NOP;
CC = R7 <= 0
IF CC JUMP ._P3L15 ;

LSETUP and loop body.
….

._P3L15:
This can be avoided by using constant bounds

FOR (I=0; I<100; I++) not FOR (I=min; I<max; I++)
Or with:

#pragma loop_count(1,100,1)

56

Blackfin Memory Performance

57

Evaluation tip: Watch the Bus speed.
Some good CPU/BUS speed settings for Blackfins

30 mhz clock
DF=1 (giving 15 mhz granularity)

CPU Speed Bus speed Bus speed Bus speed
Multiple Div = 4 Div = 5 Div = 6

30 450 112.50 90.00 75.00
31 465 116.25 93.00 77.50
32 480 120.00 96.00 80.00
33 495 123.75 99.00 82.50
34 510 127.50 102.00 85.00
35 525 131.25 105.00 87.50
36 540 108.00 90.00
37 555 111.00 92.50
38 570 114.00 95.00
39 585 117.00 97.50
40 600 120.00 100.00
41 615 123.00 102.50
42 630 126.00 105.00
43 645 129.00 107.50
44 660 132.00 110.00
45 675 112.50
46 690 115.00
47 705 117.50
49 735 122.50
50 750 125.00

27 mhz clock
DF=1 (giving 13.5 mhz granularity)

CPU Speed Bus speed Bus speed
Multiple 13.5 Div = 3 Div = 4 Div = 5 Div = 6

29 392 130.50 97.88 78.30 65.25
30 405 101.25 81.00 67.50
31 419 104.63 83.70 69.75
32 432 108.00 86.40 72.00
33 446 111.38 89.10 74.25
34 459 114.75 91.80 76.50
35 473 118.13 94.50 78.75
36 486 121.50 97.20 81.00
37 500 124.88 99.90 83.25
38 513 128.25 102.60 85.50
39 527 131.63 105.30 87.75
40 540 108.00 90.00
41 554 110.70 92.25
42 567 113.40 94.50
43 581 116.10 96.75
44 594 118.80 99.00
45 608 121.50 101.25
46 621 124.20 103.50
47 635 126.90 105.75
49 662 132.30 110.25
50 675 112.50
51 689 114.75
52 702 117.00
53 716 119.25
54 729 121.50
55 743 123.75
56 756 126.00

58

Memory Hierarchy - Caching

The cache occupies some of the L1 memory. (it’s optional)
Recommend use caching from the start .

Either use the Project Wizard or:
(1) Use Linker option USE_CACHE
(2) Insert in the C program:

#pragma “retain_name”
A static integer “cplb_ctrl = 15”

(3) Write Back mode holds writes until cache line dismissed.
Requires a change to the CPLB table to activate.

The alternative use of L1 as non-cached data is forced with
the section directive.

static section(“L1_data") int X[100];

59

Spread across the SDRAM banks.

The ADSP-BF533 EBIU allows for 4 internal banks in an external
SDRAM bank to be accessed simultaneously, reducing the stalls on
access compared to keeping program and data in one bank.
An SDRAM row change can take 20-50 cycles depending on the
SDRAM type.
Macro “PARTITION_EZKIT_SDRAM” used with standard LDF files
spreads out your application with code, heap and data in separate
banks
Results from EEMBC MPEG4 Encoder

6.5% performance improvement.

(Executing code and data from external memory with caching off.)

60

SDRAM access – significant costs.
(using Bf533 EZkit)
Average time over 10,000 16 bit transfers

Sequential Alternate Rows Alt Rows/diff Banks
L1 Read 1 1 1
L3 (cached) Read 7.7 9.4 7.7
L3 Read 40.4 141.5

L1 Write 1 1 1
L3 (cached) Write/WT 5.2 45.7 5.2
(Times in cycles at 600 mhz core speed)

Generic problem to industry – much faster processors, slightly faster memories.
SDRAM access can be more significant than all the cleverness the compiler may

engage in vectorising a loop.
Cache gives a three times performance improvement on first access because the

data is requested and sent in 32 byte “lines”. The big pay off with cache is in data
re-use.

Cache is reactive, not anticipatory like DMA.
SDRAM row switching, slows you down by a factor of 3.5 for reading and nine! for
writing.

61

Code Speed versus Space

Compile for minimum code size or for maximum speed?
Many optimisations increase the code size.
This is at it’s most extreme in DSP Kernels, where loop
unrolling, vector prologs and epilogs increase space several
times.
But minimising space in DSP kernels would cost us far too
much performance. So it becomes important to highlight
code to be compiled for space or for speed.

-Os and –O settings are available down to the function level.

#pragma optimize_for_space
#pragma optimize_for_speed

62

Which Options? (code density suite)
Control code size has significant variability on a Blackfin.
As much as a 50% variation in code size can be available.
No mode change calling between speed and space optimised code.
Space optimised code has no restrictions on functionality.

2% -Ofp

48% -O / -Os

45%
Function inlining.

4% misc.

Breakdown of size factors

63

Advanced Automatic speed/space blending.

-Ov (1 to 100)
Based on Profile Guided Optimisation analysis.

The compiler knows exactly how often each block of code is
executed, which is a good guide to its importance.
The compiler knows pretty well how size expansive each of
its speed increasing transformations is.
Combining this information, the compiler can apply the –OvN
as a threshold and decide whether to (individually!) compile
each block of the program for space of speed.

This is staggeringly simple, and very effective.

64

Trial results from –OvNum
(stepping “Num” from 0 to 100 by 10)

EEMBC Consumer. All five apps show these curves.
Shows we have a large range offering reduced space.
Shows Peak performance is at limited high range values.

Cjpeg Speed/Space tradeoff

34000

34500

35000

35500

36000

36500

37000

37500

38000

30000000000 30500000000 31000000000 31500000000 32000000000 32500000000

Speed

Sp
ac

e

65

The Manual method of blending space and
speed. – Try file level granularity.

Yellow files matter
for speed.
Blue files matter for
space.
22 out of 28 files are
almost irrelevant for
speed tradeoffs and
could be compiled
for min space.
It’s not always the
same files that
matter for speed and
space.

66

Correlate speed and space, filter and order
the file list.

(These figures are percentages of the available variation in space
and speed, not total application space and speed.)

filedata.c -O (25% faster for no space increase)
jccolor.c -O (9.7% faster for 1.1% space increase)
jcdctmgr.c -O (17.76% faster for 7.7% space increase)
jerror.c -O (25% faster for 13.2% space increase)
jccoeffct.c -O (16.25% faster for 10.5% space increase)
jcprepct.c -O (5% faster for 5% space increase)

This method appears to give us some advantages.
We have removed most of the files from play.
We have interesting tradeoffs.

67

Examples

Some real examples based on programs submitted by
customers and using the principles outlined in this

presentation.

68

A real case of “complex” data structure –
Before …..

for (INT16 j = 0; j < syncLength ; j ++) // THIS LOOP VITAL TO APP PERFORMANCE.
{

k = i + j;
realSyncCorrelation += ((INT32)sample[k].iSample * syncCofs[j]) << 1 ;
imagSyncCorrelation += ((INT32)sample[k].qSample * syncCofs[j]) << 1 ;

}
Producing:

._P3L15:
A0 += R1.L*R0.L (W32) || R3 = W[P1++P4] (X) || NOP;
A1 += R3.L*R0.L (W32) || R1 = W[P1++] (X) || R0.L = W[I0++];

// end loop ._P3L15;

You must have an idea of what optimal code would look like.
A vector MAC is desirable, but appears to be blocked by three load/store requests.
Consider the Data layout.

typedef struct
{

INT16 iSample; <<<<<<<< We pick up this, but have to assume only 2 byte
alignment

INT16 qSample; <<<<<<<< We pick up this, but have to assume only 2 byte
alignment

INT16 agc; <<<<<<<< This element is interspersed with the data we want.
}rxDMASampleStruct t; <<<<< 6 byte struct Odd lengths can be trouble

69

… and After

Copying data to a temp struct is cheap compared to
gains.

INT16 sample_iq[287*2]; // local copy of data - real and imaginary shorts consecutive.
for (INT16 j = 0; j < syncLength ; j ++)
{

k = i + j;
realSyncCorrelation += ((INT32)sample_iq[(k*2)] * syncCofs[j]) << 1 ;
imagSyncCorrelation += ((INT32)sample_iq[(k*2)+1] * syncCofs[j]) << 1 ;

}

Producing optimal code for a single cycle loop:

._P3L15:
A1+= R1.H*R3.L, A0+= R1.L*R3.L || R1 = [P0++] || R3.L = W[I0++];

// end loop ._P3L15;

Note the (k*2) form. This is a particularly strong way of
expressing to the compiler that the alignment will be 4 bytes.

70

Customer’s Goal : get ported C to run as
required

This is abstracted from a real evaluation of the Blackfin.

Strategy for application acceleration:

(1) Insert timing points and checking code. (50 million cycles)
(2) Optimisation on. (9.5 million cycles)
(3) Cache on. (1.4 million cycles)
(3) Investigate global optimisations.
(4) Profile
(5) Focus on hot spots
(6) Set exact MHZ and bus speed.
(7) Memory tuning for target device.

71

Problem #1 : Profile and Focus - ETSI

Statistical Profiler reveals ETSI fractional arithmetic costly.
Code inspection reveals implemented by function calls.

Engage compiler builtins for ETSI. This only requires a pre-
processor setting
#define ETSI_SOURCE
#include <libetsi.h>
ETSI call mostly collapse to mostly single machine
instructions.

Result: Subsection reduced from 187,000 cycles to 141,000.

72

Problem #2: Conditional jumps found in
critical loop

short corr_max(DATA *corr_up,DATA *corr_down,DATA *store,DATA gate_level, ushort nx)
{

int j;
for (j=0;j<len;j++) {

DATA maxval; // DATA is 16 bits.

maxval = *corr_up++;
if(*corr_down>maxval) maxval = *corr_down;
corr_down++;
if(maxval>gate_level)
{

if(maxval>*store) *store = maxval;
}
store++;

}
return 0;

}

What’s wrong with this?
Three conditional jumps inside a loop!
Initial cost 67,000 cycles for this subsection, mostly jump stalls.

73

Remove first Conditional jump!

Transform:
maxval = *corr_up++;
if(*corr_down>maxval) maxval = *corr_down;
corr_down++;

to:
maxval = max(*corr_down++,*corr_up++);

Time cut from 67,000 to 40,000 cycles.

Why did the compiler not perform this transformation?
Wrong DATA type. Compiler does 32 bit values

automatically, but is more cautious with 16 bit.

74

Remove second Conditional jump

Look at the innermost conditional

if(maxval>*store) *store = maxval;

Use MAX again and force condition to always execute.

*store = max(*store,maxval);

A compiler will not do this for you. We are forcing an extra write,
which the compiler will reckon is outside of its competence and
might be counter productive. This is a programmer level decision.

Saves another 6,500 cycles.

75

Remove third and final Conditional jump

Facilitate a translation to “ IF CC Rx = Ry.
A one cycle predicated instruction. Get rid of the jump, NOT the condition.

for (j=0;j<len;j++) {
unsigned int maxval;

oldvalue = *store;
maxval = max(*corr_down++,*corr_up++);
maxstore = max(oldvalue,maxval);
if(maxval>gate_level) //<<<<< Pattern for predicated instruction
{

newvalue = maxstore;
} else {

newvalue = oldvalue;
}
*store++ = newvalue;

}

The Problem is that we now write to “*store” unconditionally.
The compiler will not do this for you - the compiler will say "what if one of those addresses
was invalid –or the programmer wanted to access memory strictly by
“(maxval>gate_level)".
Quite right. Programmer level decision.

Result: Down another 16,500 cycles

76

Remove coercion

Sharp eyes will have noted that variable Maxval changed from
a DATA (2 bytes) to a 4 byte variable.
This is to remove an unnecessary coercion. (16 -> 32 bits)
The problem is that the Blackfin control code style, including
comparison operations is set up for 32 bits.

Solution: Make maxval an unsigned integer.

2,000 cycles saved. (One instruction from the loop.)

77

Performance impact by removing All three
CONDITIONAL LOOPS

The final machine code looks like this:
LSETUP (._P1L1 , ._P1L2-2) LC0=P5;

._P1L1:
R0 = W[P0++] (X);
R2 = W[P1++] (X);
R0 = MAX (R0,R2) || R2=W[P2+ 0] (X) || NOP; //<<<<< IF (1) => MAX instr
CC = R1 < R0 (IU);
R0 = MAX (R0,R2); //<<<<<<<<<< IF (2) => MAX instruction
IF !CC R0 = R2 ; //<<<<<<<<<< IF (3) => Predicated instruction
W[P2++] = R0;
// end loop ._P1L1;

This is nearly optimal. Software pipelining can be
triggered by prefacing the loop with #pragma no_alias.

The loop is now running about 3.5 times faster than the
original. There are no jump stalls.

78

Problem #3: Opportunities with Memcpy

Statistical profile shows that we spend time in memcpy().
Experimentally engage Write Back mode in the cache.
This means that data will not be copied back to external
memory until the cache line is retired.

Setup in cplbtab.h.
#define CPLB_DWBCACHE CPLB_DNOCACHE | CPLB_CACHE_ENABLE

0x00000000, (PAGE_SIZE_4MB | CPLB_DWBCACHE),

Subsection time reduces from 87,000 cycles to 50,000.

79

Additional Information about Memcpy

Memcpy() is written to reward 4 byte alignment of data.
It checks word alignment and uses a word at a time loop if it
can. Otherwise a byte by byte copy is performed.

Because: A Blackfin can do a 4 byte load and a 4 byte store
in a single cycle, but you can only load or store a single byte
per cycle.

Gives an Eight times advantage to 4 byte word operations.

Future work on this program might include the re-alignment
of application data buffers.

80

Problem #4: Loop Splitting?

for (k=0; k<numcols; k++)
{

kr1+=(LDATA)L_mult((fract16)*matdc_val_loc, (fract16)*f_coef1++);
ki1+=(LDATA)L_mult((fract16)*matdc_val_loc, (fract16)*f_coef1++);
kr2+=(LDATA)L_mult((fract16)*matdc_val_loc, (fract16)*f_coef2++);
ki2+=(LDATA)L_mult((fract16)*matdc_val_loc, (fract16)*f_coef2++);
matdc_val_loc++;

}

The Blackfin has dual accumulators, but the compiler is only using one in
processing this code.
The problem may be complexity or too many active pointers whose range is
not obvious to the compiler (ie. An aliasing problem.)

Consider: Split into two simpler loops.

81

Impact of Loop Splitting

const int numcols=*matdc_numcols_loc++;
for (k=0; k<numcols; k++) {

kr1+=(LDATA)L_mult((fract16)*matdc_val_loc, (fract16)*f_coef1++);
ki1+=(LDATA)L_mult((fract16)*matdc_val_loc, (fract16)*f_coef1++);
matdc_val_loc++;

}

for (k=0; k<numcols; k++) {
kr2+=(LDATA)L_mult((fract16)*matdc_val_loc2, (fract16)*f_coef2++);
ki2+=(LDATA)L_mult((fract16)*matdc_val_loc2, (fract16)*f_coef2++);
matdc_val_loc2++;

}

This produces optimal code for each loop, using both accumulators.

._P1L7:
MNOP || R0.H= W[I0++] || R1.L = W[I1++];
A1+= R0.H*R1.L, A0+= R0.L*R1.L || NOP || R0.L = W[I0++];
// end loop ._P1L7;

20,000 cycles saved.

82

Next Step: Tune to final Platform

The same techniques, applied in other areas reduced the time by
another 40,000 cycles.
We have come from 1.45 million to 0.73 million cycles in all.

There remained lots of scope for #pragma no_alias but that required
customer knowledge to do safely.

The app is now moved to a BF532 from the BF533 development
platform.
This means less L1 memory and half the cache size.

Time goes back up from 727,000 to 900,000 cycles.

Exploration with profiler and cache monitor confirms this
application is sensitive to memory bus activity.

83

Consider Bus Speed : Set Sclk and Cclk

The processor speed and bus speed of the Blackfin are
variable.

Experimentation reveals that:
CCLK= 391.5MHz
SCLK= 130.5MHz
Are optimal.

Explanation: The clock on the BF532 Ezkit is 27 mhz. This is
multiplied by 29 and divided by 2 to give a mhz of 391.5. The
bus speed is established by dividing this by three = 130.5
mhz.
We were at 900,000 cycles, now we are at 839,000 cycles.

84

Consider L1 SRAM allocation

The default LDF file uses any free L1 memory and cascades
the rest of the application to external memory.

Study cache behaviour with Cache Viewer. A number of
cache events are seen that represent collisions.
Track these back to user data constructs.
Hint: Noticed in statistical viewer a store instruction taking
12 times longer than adjacent instructions. – has to be
memory problem.
Placed user data causing cache collisions into L1 memory.
Final speedup from 839,000 to 747,000 cycles.

End of Project.

85

Additional Information

Reference material
EE197 Blackfin Multi-cycle instructions and latencies.
Blackfin Compiler manual, chapter 2: Achieving Optimal
Performance from C/C++ Source Code.
ETSI – European Telecommunications Standards Institute.

For Questions, click the “Ask A Question” button
Or email to Processor.support@analog.com

