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Chapter 1: Introduction 
Subchapter 1a: Overview   

 

Hi my name is David Lannigan.  I work in the DSP and Systems group at Analog Devices.  Today 

I’m going to be talking about the device driver model for the Blackfin family of processors.   

 

Prior to viewing this module the user should have a good understanding of the Blackfin 

architecture, and have also viewed the system services module of the BOLD training.   

 

I’m going to start by going through some background information, some common conventions, 

terminology that we use with the device drivers.  I’m going to talk about the device driver API, 

show the functions that exist in the API.  We’ll talk about buffers, which are how the application 

provides data that the device drivers go and process.  We’ll talk about the various dataflow 

methods that the device drivers use, which describe really how the device drivers actually 

process the data within those buffers.  And we’ll go through a very simple example with our UART 

device driver, again with the VisualDSP toolset in the December 2005 update, just a very simple 

talk through type example that will illustrate many of the concepts of the device drivers.  

 

Chapter 2: Device Driver Model 
Subchapter 2a: Overview 
The device driver model uses a standardized API, so all Blackfin processors use the same API 

regardless of the processor, regardless of the driver.  Developers only have to learn the API once.  

All drivers operate the exact same way.  It’s extensible, there are definitions that each driver can 

go and add their own commands, their own events, their own return codes, the goal is to cover 

the vast majority of device drivers.  Today we support such diverse devices as SPORTS, Serial 

Ports, SPI, PPI, TWI and advanced devices such as Ethernet and USB. There will be exceptions 

though, the goal is to cover the vast majority but it’s anticipated there will be devices that come up 

some time where the model doesn’t fit.  But like I’ve said we’ve created a very broad and diverse 

set of device drivers, and the model does fit them quite nicely.   
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The device driver model is built upon the system services, that allows us to have a very stable 

software base and we don’t have to reinvent such things as DMA and include that in each 

individual device driver.  The drivers themselves leverage the system services. For example a 

PPI driver will make use of the DMA service to go and use DMA to move data.  This allows us to 

have a very modular software environment. It allows us to have better compatibility so that the 

drivers inter-operate with each other in a very simple and clean manner.  Easier integration; 

there’s very few issues in terms of having multiple drivers working concurrently in the same 

application.  And it’s portable, the driver for the BF533 works identically as it does on some of our 

other Blackfin processors such as the BF537 even the dual core BF561.   

 

The basic architecture for an application is shown in this diagram here, where the application is 

up at the top. Sometimes as an RTOS such as a VDK or a third party operating system, 

sometimes not, often the applications run as we call just “stand alone.”   Below that are the device 

drivers.  And as you can see on the diagram the device drivers sit on top of the system services, 

and the drivers themselves make calls into the system services, such as interrupts.  Whenever a 

driver wants to control an interrupt, it makes a call to the interrupt manager. DMA, as I said earlier, 

makes calls into the DMA service and so forth.  

 

Chapter 2b: Using device driver 
To use a device driver in a VisualDSP project is quite simple.  In the application’s source file you 

need to include three lines.  The first line that I’ve shown here on the slide, shows “#include 

<services/services.h>”.  That include file pulls in all the system services so DMA, Interrupts, Port 

Control, all of those services are brought in through that include file.   Next up is the device 

manager’s include file, it’s called “adi_dev.h”.  That pulls in all the generic device driver 

information such as the API itself, return codes, event codes, and all common device driver 

information.  The third file that would need inclusion is the device driver itself; the include file for 

the specific device driver.  If we were building an application as I’ll show in the example later on 

using the UART, we would include the UART’s .h file and that pulls in all the specific information 

regarding the UART device driver.   

 

For off-chip device drivers, for things such as external devices such as a CODEC or a video 

encoder, or a video decoder, an off-chip Ethernet controller and what not, to pull in that device 

driver the user should include the device driver’s .C file or it’s “name “.C file or collection of .C 

files depending upon the driver and a list of sources.  We don’t provide a library with all our 

external devices because the library is actually quite big, and we don’t know ahead of time what 
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devices each application is going to use.  The application, in order to save memory space, just 

brings in the active drivers that are needed for that particular application.  

 

In the linker files folder the application needs to link with the proper system services library that’s 

the libssl library.  And it also needs to pull in the proper on-chip device driver library. All those 

libraries are prefixed by the letters “libdrv”.  I’ll go through how to decide which library to pull in, in 

just one minute.  Another option that is strongly recommended is to the Code Elimination Option 

in the Linker Property Page.  This significantly reduces code size and what it does is it throws 

away all the code that’s not used in the particular application.  If we’re using a device driver and 

we’re only using functions A, B, and C of the device driver it’ll throw out the functions D, E, and F 

if they’re not used in the application.  This significantly saves code space which is important in 

embedded applications.  

 

Chapter 2c: On-Chip Driver Library 
The on-chip drivers come in two flavors, we have a Debug version of the library and we have a 

Release version of the library.  We strongly recommend that when users are starting off they use 

the Debug version of the library.  All the compiler optimizations are turned off, symbolic 

information is included, which allows you to step into the source code and see exactly what 

happens on a line by line basis. We do a lot of parameter checking in the Debug version of the 

library so that if parameters are passed and they contain incorrect values we do our best to make 

sure that we check for those and return the appropriate error codes should they occur.  

 

As I said these should be the libraries that users start with; examples, demos typically use the 

Debug version for illustrative purposes.   

 

Once the user is satisfied that the driver is working properly, they can switch to the Release 

version of the on-chip library.  In the Release version all the compiler optimizations are turned on, 

so performance is improved.  However we don’t put in symbolic information so it makes it very 

difficult to step into the sources and see what is executing in any point and time.  We do much 

fewer, if any, parameter checks because we assume at that point the user is employing the 

Release version of the Library, they know what they’re doing so we actually relax the vast 

majority of our parameter checking.  These should be the Libraries that users end with.  Again, 

start out with the Debug Version of the Library, but when you’re ready to release your product 

switch to the Release version of the Library.  
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How do I decide which Library to pull in?  Well we use the same naming convention as is the 

convention in VisualDSP.  The device drivers libraries for all the on-chip peripherals are prefixed 

with LIBDRV which stands for the library for the device driver.  The next three characters describe 

the processor variant that that library pertains to.  For example if the next three characters are 

532, that pertains to the BF531, BF532, and BF533 Blackfin processors.  The prefix 534 supports 

the BF534, BF536 and BF537 processors.  And 561 supports the dual core BF561 processor.  

The next three characters are omitted today, when we have a driver that requires some support 

from the operating system.  You’ll see that the next three characters define the operating system 

that’s appropriate for that particular driver.  In this case here, with all the device drivers that we’ve 

written today, we don’t have any specific versions of the Library that require anything from the 

RTOS.  Today those next three characters that show in the slide, the “bbb”, are blank.  The 

drivers run in both stand alone and in the VDK version today.  

 

The next two characters define any special conditions for the library.  The combinations, or the 

letters used in those two characters are either “d” and or “y”.  If there’s just a “d” there that means 

debug version of the library.  If there’s no “d” there then it’s a release version of the library.  The 

letter “y” stands for work-arounds for silicon anomalies. If the letter “y” is in the library’s name then 

that means we have the work-arounds for all the various silicon revisions built into that library.  

And a combination “dy” means it’s a debug version, plus all the work-arounds are in there.   If it’s 

blank it means it’s not debug, which means it’s the release version and we don’t have any work-

arounds.   

 

To find all the information on the device drivers, the include files for all of our drivers are kept in 

the directory called “Blackfin\include\drivers”, and on this slide here I’ve shown the default 

location when you install VisualDSP this is where we’ll find all the include files for the device 

drivers.  The sources themselves provide source code for all the device drivers that we have 

today, those are located in “Blackfin\lib\src\drivers”.  The libraries themselves are located with the 

rest of the VisualDSP libraries in the directory “Blackfin\lib”.   

 

Examples, we have examples for the BF533 EZ-Kit, the BF537 EZ-Kit, and the BF561 EZ-Kit. 

And those examples are found in the directory “Blackfin\EZ-KITS” and then you look in the 

appropriate sub directory for the processor that you’re targeting.   

 

We have two pieces, two major pieces of documentation I should say on the device drivers, one 

is the manual itself, that’s located in the Technical Library section of Analog.com.  And then we 

had an addendum that we published in September of 2005 that includes information on some of 
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the newer services and some of the newer capabilities of the device driver.  That can be found on 

Analog’s FTP site as shown on the slide here.   

 

Chapter 3: Design Considerations 
Subchapter 3a: Memory 
No dynamic memory is used in any of our device driver.  Any memory that’s used by the driver is 

allocated statically.  However the device manager itself needs memory to manage devices.  The 

more device drivers you want to run concurrently, the more memory is needed to be provided to 

the device manager.  physical drivers, the low level drivers for the PPI, SPORT, UART etcetera, 

they use static memory for all their internal data so there’s no dynamic memory allocations that 

go on in those drivers. In general no dynamic memory allocation in any of our device drivers, all 

of it is either allocated statically or provided by the user at application time.  This allows the 

application to tell us what memory to use, whether it’s internal memory, whether it’s in external 

SDRAM memory, we leave that up to the user to decide.  As a result we have no restrictions on 

any memory placement, be it code or data, they can be wherever the application wants it to be.  

 
Subchapter 3b: Handles 
We use Handles to communicate between, or to identify the various components within the driver 

model itself.  When a device driver is opened, the application is passed back a handle to that 

device driver. Every time the application wants to reference that device driver from that point 

forward, it needs to pass the device Handle so that the system knows what device driver’s being 

accessed at any point and time.  It’s really just a unique identifier and really points to the address 

of a location in memory that we use to keep all the information that we use to manage that 

particular device driver.   In turn, when a device driver is opened, the application provides us with 

a handle, this Client handle.  The Client Handle can be whatever the client or application wants it 

to be, it has no significant to the device drivers, it can be anything that is relevant to the client.  

And we use this handle whenever the device driver communicates back to the application.  Let’s 

take the case of an asynchronous event that occurs when the device driver wants to notify the 

application of that event, say an error occurred or a buffer has been filled or what not, the device 

driver passes that client handle back to the application so that the application has a means to 

identify where that notification is coming from.  

 

Subchapter 3c: Result code 
Almost every API function returns a result code.  There are a couple of exceptions that are very 

obvious, but by in large every function returns a result.  Zero is the value for universal success.  If 

a device driver, or rather any of the device driver API calls return a zero, that means everything 
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was successful in that execution of that call. If it’s non-zero that means some type of error has 

occurred or some type of informative result is being turned back to the application. Each driver 

has its own set of return codes so they’re unique. Each driver’s return codes are unique from the 

other drivers in the system. They return a u32 or an unsigned 32 bit value.  This value that’s 

passed back can be examined and depending upon the value it indicates what error or 

informative event is being returned to the application.  For example let’s say that we open up a 

serial port driver and that serial port driver is required to hook into an interrupt, say the error 

interrupt for a serial port.  The device driver opens the interrupt and hooks the interrupt properly 

and everything happens as it should, a value of zero is returned back to the application.  If for 

example, maybe there’s some reason why that interrupt could not be hooked, then the device 

driver returns back and error code indicating that the interrupt can not be hooked and the 

application needs to take some action. 

 

When a non zero value is returned back to the application, the easiest way to find out what’s 

wrong is to look in the “services.h” file and you’ll see in there a unique set of numbers that each 

System Service or each device driver can return.  And then look in the appropriate .h file for that 

particular value and that will indicate what either the error code or the informative value means.  

 

Subchapter 3d: Initialization 
There’s a specific sequence that the application needs to perform in terms of initialization.  

Because the device drivers are built on top of the System Services, the System Services need to 

be initialized first and then we initialize what’s called the device manager.  The device manager 

provides the API for all the device drivers, so he’s kind of in control of all the various device 

drivers in the system. But because the drivers layer on top of the services, the services should be 

initialized first followed by the device manager.   The specific sequence that should be followed is 

shown in this slide.  Interrupts, you want to  initialize the Interrupt manager first, and then we do 

the EBIU which is our external bus interface unit, Power, Port Control, then our Deferred Callback 

Service, DMA manager, Flag Service, Timers, and then finally the device manager itself.  If any of 

these services are not used they can simply be omitted from the sequence.  This specific 

sequence ensures that everything’s initialized properly so that we don’t have any conflicts, any 

service or device trying to be accessed before something has been initialized.  

 

Subchapter 3e) Termination 
Conversely there’s a specific termination sequence that the application must follow. Often 

embedded systems applications never terminate, they run perpetually, but if there is a need to 

terminate, the stacks should be terminated in a specific sequence, that sequence is shown here.  
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The sequence is the exact opposite of the initialization sequence, so the device drivers should be 

terminated first, followed by the termination of the System Services in the exact opposite order 

that they are initialized.  In this case here terminate the device manager itself, and then we go 

through the Timer, Flags, DMA, Callbacks, Port Control, Power, EBIU, and lastly the Interrupt 

manager.  

 

 Subchapter 3f: RTOS Considerations 
Within the device drivers that we have today, there are no device driver dependencies on the 

RTOS.  For example the VDK RTOS from Analog Devices, we do not have a specific device 

driver Library for the VDK because the device drivers run in both the stand alone mode and with 

the RTOS.  Any of the RTOS interactions, the areas where the services or drivers bump into the 

RTOS, they’re all isolated in the System Services which is why we have different System Service 

Libraries for stand alone or RTOS versions, but in the device drivers themselves there are no 

dependencies. One thing to note is that the API is identical regardless of whether we’re running in 

RTOS environment or in a stand alone environment, there’s no changes at all so the application 

doesn’t have to change any of it’s calls if it decides to move from a stand alone environment to an 

RTOS based one or vice versa.   

Chapter 4: Device Driver API 
Subchapter 4a: Overview 
The API is quite simple, on this slide here I’ve shown the application on the left hand side, and 

the device driver on the right hand side. There are six functions in all in the API, and they’re very 

familiar to anyone that has used device drivers in the past.  We basically have the five common 

ones; open, close, read, write, and control, and then we have another one that we’ve added 

called SequentialIO.  Let me go through each of these individually and explain a little bit about 

what they do. 

   

Subchapter 4b: API Functions 
The adi_dev_Open() function obviously opens the device driver for use.  When the application 

wants to use a driver the first thing it does is call the adi_dev_Open() function. If the application 

ever decides that it doesn’t need the device driver any more it can call the adi_dev_Close() 

function.  The adi_dev_Close() function shuts down and releases any system services that were 

used, any hardware that was used, it shuts it all down in an orderly fashion.  If a device driver has 

been opened for inbound dataflow, or for bi-directional dataflow, the adi_dev_Read() function is 

used to pull data in from the device.  In other words to pull data in say, let’s take the case of a PPI 

that is connected up to a camera, as we want to take data in from that camera we would use the 

adi_dev_Read() function to pull that data in through the PPI device.  Conversely we have a write 
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function.  The write function is used to send data out through the device driver, so take that same 

PPI driver again, if we were going to take that video data that we recorded from the camera and 

play that back to a monitor, we would use the adi_dev_Write() function to send that data out 

through the PPI and out to the monitor.   

 

We have another function called adi_dev_Sequential IO() and that allows the application to 

specify a specific sequence of reads and writes.  Without Sequential IO, reads happen as fast as 

reads can happen, writes happens as fast as writes can happen, but there’s no synchronization 

between reads and writes.  If a device such as the case of a DSL modem, a DSL modem typically 

has a faster download speed than upload speed; reads happen at a much quicker rate then 

writes. 

 

If there’s a device that requires a specific sequence of reads and writes in a specified order, the 

adi_dev_SequentialIO() function provides a mechanism that allows the application to specify 

some number of reads followed by some number of writes or what not, but in a very specific 

sequence.  

 

Lastly we have the adi_dev_Control() function which in the old days was kind of like the IOCTL or 

IOCTL functions in some of the earlier device drivers.  This function is used to typically set or 

sense any type of parameters for the device driver. In the example I’m going to show later on 

we’re going to use the adi_dev_Control() function to specify the baud rate for UART, the number 

of stop bits and so forth.  

 

That’s it.  There are only six functions that are used when an application wants to communicate 

with the device driver. Coming back the other way, if the device driver needs to communicate 

back to an application, that communication happens asynchronously through the event 

mechanism and callback mechanism that we have in the System Services.  When the device 

driver needs to notify the application of an event, say that event could be the buffer has been 

processed, or that an error has occurred on the device or what not, invokes the applications 

callback function.  Right there, that is the entirety of the API between the application and the 

device driver.  Those six functions, and then the applications callback functions so that the device 

driver can notify the application.   

 

That’s it.  It’s not any more complicated then that.  And one thing to note is as I described earlier 

about the handles, when the application calls the adi_dev_Open() function it’s given a handle for 

that device driver.  Any of the other five functions; adi_dev_Close(), adi_dev_Read(), 
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adi_dev_Write(), adi_dev_SequentialIO() or adi_dev_Control(), the application passes that handle 

as the first parameter into that API function.  And that lets the device manager which specific 

device driver the application is addressing.  When the device driver notifies the application of 

some event, by the callback function, the device driver passes back to the application that client 

handle value that was passed in. That client handle value is passed in again in the 

adi_dev_Open() function.  That way the device drivers know how to communicate back up to the 

application.  

 

These same six API functions are the same regardless of which device driver is being used.  Be it 

a UART, be it a PPI, SPI, SPORT, TWI, Ethernet, USB, the API is identical.  Even for our off-chip 

peripherals such as ADCs, DACs, Video Encoders, Video Decoders, again those same six 

functions are used.  The API itself is described in the generic device driver .h file called 

“adi_dev.h”.  Each device driver can add extensions. It can add it’s own custom commands, so 

for example if it has it’s own IOCTL values or unique parameters that need to be set or sensed.  

Take the case of a DAC for example; a DAC you may want to set the volume of a specific DAC, 

each device driver has the means to extend the control function or the commands that can be 

passed through the control functions I should say, to the device driver.  Also each device driver 

can create new return codes for the application to better convey should something go wrong or 

any type of informative type functionality through an API call.  Each device driver can specify its 

own return values in addition to the ones that you can find in the generic “adi_dev.h” file.  

 

Also events, the device driver can create any additional events that warrant notification back to 

the application in the standard generic “adi_dev.h” file we provide events for buffer completion, 

errors and so forth.  But if there’s some unique situation that a device driver needs to notify an 

application, the device driver can actually extend the API to describe additional events.  For 

example an off-chip controller may decide to go into sleep mode, and it needs to notify the 

application that it’s going into sleep mode, it can create an unique event that says such and tell 

the application whenever that event occurs.   

 

Subchapter 4c: Interaction with System Services 
As I said at the beginning of the presentation the device drivers are built on top of the System 

Services.  That makes it very easy and very simple for us to create device drivers, and also gives 

us a nice way to manage the resources of the Blackfin part itself; for example DMA.  The PPI 

device driver makes calls into the DMA manager whenever it needs to move data through the 

DMA; opening DMA channels, providing descriptors or what not, rather then have to put that in 

each device driver that uses DMA we only implement that once in the System Service.  We 
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implement it once, we get it working properly, and then all of the device drivers go and benefit.  

Same thing with Interrupt Manager, Timers, and Deferred Callbacks etc.  The PPI driver uses all 

that functionality but simply makes calls into the appropriate system service to go and manage 

that functionality.  From an application perspective the only thing the application needs to do is 

initialize the system services.  Once the system services are initialized the device drivers make all 

the calls themselves into the system services.  Again take the case of the PPI driver, when the 

PPI driver needs to use the services of DMA, provided the application has initialized the DMA 

service, the PPI driver just goes in and accesses the DMA service as it needs to.  This makes it 

very simple for the applications, the applications only have to talk to the device driver API then all 

the system service activity is taken care of by the device drivers themselves.   

 

Chapter 5: Transferring Data 
Subchapter 5a: Buffer Overview 
The means to move data through a device driver either out through the device or in from the 

device, we use buffers to describe that data.  We have two types of buffers, inbound buffers, 

they’re filled with data that comes in from the device and outbound buffers that contain data that 

the application wants to send out through the device.  We have various types of buffers; we have 

one dimensional buffers, which are traditional linear buffers.  We have two dimensional buffers 

that map directly to the 2D DMA capability of a Blackfin architecture, very important when doing 

video type applications where you want to get macro blocks out of a big frame for example.  We 

have sequential buffers that are used for the Sequential IO functions. Today they’re just one 

dimensional buffers, but linear buffers where we can describe a specific sequence of reads and 

or writes.  And then we have circular buffers, they map directly to the auto-buffer capability of 

Blackfin. With a circular buffer, we give it one big chunk data and then the device driver 

continually iterates through that circular buffer.   

 

Subchapter 5b: One-Dimensional Buffer 
Let’s look at a one dimensional buffer which is the simplest of the various types, this line here 

shows the fields that are within that one dimensional buffer.  The first field in there is the pointer 

to the data.  The data can exist any where in memory, so the buffers themselves can be 

physically removed from where the data is.  This is very useful in that we don’t have to move data 

back and forth, and we don’t have to put buffers in the same place as the data, so we can move 

large amounts of data, say video where the video frame is almost a megabyte of data, we can put 

the buffers themselves in a different spot then the actual data that’s contained within the buffer.  

There’s an element count that says how many elements that pointer to the data, or how big that 
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data is.  Then there’s the width of each element so that’s the width in bytes of each element 

within that data.   

 

Let’s take a case of a piece of data that’s 1,024 bytes long.  We would typically say the element 

count is 1,024 and the element width is 1, meaning 1 byte wide.  If we wanted 1,024 elements of 

16 bit data, again the element count would be a 1,024, but the element width would be 2, 

because it’s 2 bytes wide.  Each buffer has a callback parameter.  The value for that callback 

parameter indicates whether or not the device driver needs to notify the application when that 

buffer has been processed.  If the callback parameter is NULL, then no callback is made when 

that buffer is processed.  Let’s take the case of an application sending a buffer out through a 

device. If when it creates the buffer it puts a NULL value in the callback parameter, the device 

driver will go and send that data out through the device, but will not notify the application that the 

data has actually been sent out.  If the callback parameter is non-NULL, then that indicates to the 

device driver that the application wants to be notified when the data has been sent out to the 

device. The device driver will callback the application, letting the application know that that buffer 

has been sent out.  And it actually passes back to the application callback function, the value that 

was passed into the callback parameter. This gives the application several choices, it can tell the 

device driver here’s some data go and send out, or data to fill, to pull in from the device.  You 

don’t need to notify me when it’s done.  Or another option is here’s some data that I want to go 

and send out through the device, or fill in from the device, and I want to be notified when that 

buffer has been processed.  We give the application the option of being notified or not being 

notified.   

 

Next in the buffer is a Processed Flag, and that gets filled in by the device driver, it’s just a simple 

flag that says TRUE or FALSE whether or not the device driver has finished processing that 

particular buffer. If has processed it, there’s a Processed Count Field that gets filled in.  That 

Processed Count field indicates the number of bytes that have been processed by the buffer.  

Typically that’s the same as the element count times the element width, but there are instances 

where that may not be the same, let’s take the case of an Ethernet driver.  In an Ethernet system 

there’s a maximum packet size for each piece of data that goes out over the wire.  But not all 

packets are that size.  Some are much smaller than that.  In the case of the Ethernet driver we 

may be passing a large buffer to the Ethernet driver saying fill this buffer up with data that comes 

in over the wire, but maybe only a small packet was received, maybe just a short packet, so the 

process count tells the application how many pieces of data were actually put into the buffer.  
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The next field we have is called pNext, which points to the next buffer in the chain.  And that’s an 

important concept and I’ll describe that over the next few slides.  We can chain buffers together 

so that one buffer can point to another buffer to another buffer, so we create a chain or a 

sequence of buffers for the device driver to process.   

 

Last up we have a field in there called Additional Info, that’s kind of a catch all that we put in there.  

None of our device drivers today actually use that field.  In the example that I’m going to show 

later on we’re going to put some data in that field just to show how it’s used, for the purpose of 

illustrating the example.  But it’s meant as a means so that in some of our future device drivers if 

there’s information that we can’t anticipate at this point, being put into a buffer, this gives 

applications and drivers a means to include additional information that perhaps we haven’t 

thought of yet.   

 

Chapter 6: Dataflow Methods 
Subchapter 6a: Overview 
There are five basic dataflow methods.  And the dataflow methods describe how the device 

drivers process the data.  I alluded to chaining on the previous slide, we can chain both one 

dimensional and two dimensional buffers and that allows us to create one, two, three, or some 

combination of buffers.  By the way there are no limits as to the number of buffers that can be 

provided to a device driver at any point at time, how many are queued up, how many the device 

driver is processing, there’s no limit to any of that.  You can provide as many buffers as are 

needed.  

 

Chaining with loopback, I’ll describe what that is in a minute, but that allows us to create a chain 

and then loop back through that chain over and over again.  We have Sequential Chaining which 

is another chain but with a specific sequence as I described about reads and or writes in a 

specific order.  We can loop that back so we can do that over and over again.  We have a 

Circular dataflow method that maps directly to the auto buffer capability of Blackfin, where we 

give it one contiguous chunk of memory and the device driver just keeps iterating through that 

same chunk of memory over and over again.   

 

We have these five different dataflow methods, but a device driver doesn’t need to support them 

all, some of them are inappropriate for a device driver.  But the device driver has to support at 

least one, so a couple of examples here, the PPI driver supports one dimensional buffers, two 

dimensional buffers and circular buffers.  The UART driver, that I’ll show in a few minutes, 

supports one dimensional buffers.  TWI which is kind of an I2C compatible type of protocol, 
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supports sequential 1D buffers.  For that interface, or protocol I should say, a specific sequence 

of reads and or writes is appropriate for that particular protocol.   

 

Subchapter 6b: Chaining Method 
Let me walk through an illustration of chaining and how that mechanism works.  With the chaining 

method buffers are effectively queued to the device driver, and we keep two different queues, we 

keep one queue for inbound buffers, so that queue contains a list of buffers that are provided to 

the device driver by the adi_dev_Read() function.  And the device driver is going to fill those 

buffers with data as data is pulled in from the device.  We have a separate queue for outbound 

buffers.  Buffers in the outbound queue contain data that the application wants to send out 

through the device.  In both of these queues buffers are processed in a FIFO type fashion, they’re 

processed in the order that they are received.  And they’re processed asynchronously.  Go back 

to that case I talked about earlier such as the DSL modem, in there the read buffers may be 

processed at a faster rate then the write buffers, so the reads and writes happen asynchronously 

to each other.   

 

Buffers can be provided to a device driver at any time, so they can be provided at application time, 

at interrupt time, there’s no restriction as to when the application can provide us a buffer to 

process.  Buffers can be provided one at a time or in groups, so you may choose to give us 

buffers individually, one after another, you can chain buffers together so you can say here’s ten 

buffers and pass in a chain of ten buffers all at once.  Each buffer can point to data of different 

sizes.  You don’t have to have each buffer point to a fixed size buffer, we may have some buffers 

that are provided that point to pieces of data that are 128 bytes in size, we might have other 

buffers in the chain that point to buffers or data that’s 1,024 bytes in size.  You can mix and match 

different sizes on a particular queue.  

 

Any, all or no buffers can be tagged to generate a callback.  Remember a callback is the 

mechanism that the device driver uses to notify the application that the buffer has been 

processed.  In this slide here, if we start with the buffers moving from left to right, the first buffer 

would not be notified when it was processed, and the application would not be notified when that 

first process was processed.  The next one with the check mark below it, when the device driver 

processed that buffer, it would notify that application, “Hey I’ve just gone and processed this 

buffer.”  The next two would be processed automatically but no callbacks sent back to the 

application.  The second to last buffer, when that one was processed the device driver would 

notify the application that that buffer had indeed been processed.  You can mix and match, any 

buffer can be tagged, all buffers can be tagged, often some applications just tag the last buffer in 
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the chain so that they get notified when the last one has been processed so then they know that 

everything prior to that last one has been processed by the driver.  

 

Once processed, the buffer is not used again unless it’s resubmitted.  Think of that as just a chain, 

when the driver gets to the end it stops. The next slide I’m going to show with loopback and I’ll 

show a means to get around that.  But with the basic chaining method, buffers are provided to the 

driver, driver processes them, and then after they’re processed they’re basically back in the 

domain of the application.  

 

Subchapter 6c: Chaining with Loopback 
Let me talk about chaining with loopback because that’s a very efficient method of providing 

drivers with a set of buffers and then having the device driver continue to loop through those 

same set of buffers over and over again.  Let’s go back to that same sequence that we had on 

our previous slide where we talked about the chaining method, and with simple chaining the 

device driver would stop when it got to the last buffer.  With the loopback method what happens is 

after the device driver processes the last buffer, it automatically goes back and starts processing 

the beginning buffer over again.  This allows the device driver an infinite loop of buffers to 

process.  One constraint here is that buffers can only be provided when dataflow is stopped.  

That’s a difference from the straight chaining method.  The chaining method, as we said, buffers 

could be provided at any point and time.  When loopback is used, buffers can only be provided 

when dataflow is stopped.  That makes sense because if you’re in the middle of processing a 

loop of buffers and you want to add another one, where does that go in the loop?  What we do is 

we constrain it and say additional buffers can only be provided when dataflow as been stopped 

on the device.  

 

Typically that’s not a problem.  For the most part when this chaining with loopback is used, 

typically at  initialization time, the application provides the device driver with the buffers it wants to 

process, and then never needs to re-supply them later on, hence the next bullet.  Once the driver 

has been given these buffers, the device driver just keeps cycling through those over and over 

again.  And there’s virtually no overhead at that point in the system, the application never needs 

to call the adi_dev_Read() or adi_dev_Write() functions, the device driver just keeps iterating 

through those over and over again.  The device driver never starves for data if it’s sending stuff 

out, and it never runs out of a place to store data if it’s taking data in from the device.  A strategic 

use of the callbacks, allows the application to go and manage those buffers very effectively.  

 

Subchapter 6d: Sequential Chaining 
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Let me talk about sequential chaining.  Sequential Chaining is similar to the simple chaining 

method that I talked about earlier except in this case we don’t have two separate queues for 

reads and writes, we keep all the buffers in a single queue.  There’s a field in that buffer that 

indicates direction, whether it’s inbound or outbound, so if the device driver has to send data out, 

if the buffer contains data and wants to send it out, it’s marked as an outbound buffer.  If a buffer 

is provided and the device driver is supposed to fill that buffer with data, that buffer is marked as 

an inbound buffer.  We keep these inbound and outbound buffers in one queue.  And the buffers 

are processed in the order they are received.  Just like in the chaining method, buffers can be 

provided at any point and time, and again I’m going to build a little chain here down at the bottom 

of the screen.  Buffers can be provided at any point and time as I said; they can be submitted one 

at a time or in groups.  Again we only have one queue this time, and you’ll see that as I’ve 

marked in the graphics here, each buffer is marked whether it’s an inbound or outbound buffer.  

At this point time I have three buffers in the chain, the first one is marked for outbound traffic so it 

contains data that we want the device driver to send out.  The next two are marked for inbound 

data so they contain data that we want to read in from the device.   

 

Again like the chaining method each buffer can point to data of different sizes, so you can mix 

and match the outbound and inbound on the chain, you can mix and match the sizes of the 

buffers on the chain. You may have some inbound buffers that are short, and then put in some 

outbound buffers that are bigger in size, there’s no restrictions here as to the buffer size, they 

don’t have to be fixed in sizes.  There’s also no restriction as to the number of buffers that can be 

queued at any point and time.  You’re basically by how much memory there is in the system.   

That’s true for all the chaining methods.   

 

Likewise any, all or no buffers can be tagged to generate a callback.  Once processed, a buffer is 

not used again unless it’s resubmitted.  In the case of simple sequential chaining, the device 

driver starts with the first one that was queued, it processes it whether it’s an inbound or an 

outbound one, and then if the buffer is tagged for a callback, it’ll notify the application when that 

buffer has been processed.  If it’s not tagged for a callback, the device driver simply moves on to 

the next buffer in the chain without notifying the application.  Again, a very powerful mechanism.  

Today our TWI Driver, which is kind of like an I2C compatible driver, uses this method.  If you’re 

familiar with I2C, it’s a simple protocol where you typically do some writes first, where you write 

out the address of the device that you want to go and interrogate or provide data to.  Then you do 

some number of reads, let’s say you want to read data from a EPROM, you would send out the 

address of the EPROM that you wanted to access and then you would do reads to go and read 

the data from the EPROM. Sequential chaining is used to provide that specific sequence of reads 
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and writes.  When we reach the end of the chain the device driver stops.  If more buffers are 

provided the device driver automatically restarts and starts processing those buffers.  

 

Subchapter 6e: Sequential with Loopback 
But we have this loopback option with sequential chaining. That’s just like what we talked about in 

the simple chaining with loopback method, but in this case here we can loopback this sequence 

of inbound and outbound traffic.  Just like in the regular loopback case, when the device driver 

reaches the end, the last buffer in chain, it automatically starts back with the first buffer in the 

chain.  Likewise buffers can only be provided when dataflow is stopped, and most of the time 

that’s done at initialization. The sequence that the application would do if it wanted to use 

Sequential Chaining with loopback would be basically open the device driver, configure it, provide 

it with buffers via the adi_dev_SequentialIO() function, some number of inbound buffers, some 

number of outbound buffers, whatever is appropriate, tagged accordingly. And then turn on data 

flow, and then at that point the device driver would just keep iterating through that sequence of 

buffers over and over. Now this makes it very handy so that the application never needs to re-

supply buffers, so once it’s given the buffers the device driver just keeps processing that data 

over and over again.  Likewise similar to the regular chaining method, the device driver never 

starves for data and always has data to send out or pull in, very little overhead again to the 

application. 

 

Subchapter 6f: Maximizing Throughput 
With any of the chained dataflow methods we can pass a command called the streaming 

command.  The streaming command is useful for dataflow that is very sensitive to interruptions in 

the dataflow such as audio if you don’t want to have clicks and pops in audio or glitches in video 

data, the streaming command is very useful.  One thing with the streaming command is there are 

actually some assertions that the application is making to the device driver when it uses the 

streaming command.  The application ensures that the device driver will never run out of buffers, 

guaranteeing that the driver will always have an inbound buffer to process if it’s been opened for 

inbound or bi-directional traffic, and will always have an outbound buffer to process if it’s been 

opened for outbound or bi-directional traffic.  The second assertion is that if buffers with callbacks 

are used that system timing ensures that interrupts aren’t going to be lost in the system.  It’s a 

very convenient way for device drivers to maximize throughput.  If a device driver is using DMA it 

allows us to run full speed, never interrupting DMA, always keeping the DMA engines running as 

fast as possible.  As I said very useful for audio and video, it eliminates clicks and pops on audio 

sides and glitches in video.  The streaming command can be used with any of the chained 
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dataflow methods and allows the device driver to say operate at full speed and the application will 

guarantee that it will never run out of buffers to process.  

 

Subchapter 6g: Circular Method 
The circular dataflow method is the last dataflow method that we have, and that maps almost 

directly back to the auto buffer capability of DMA.  When using the circular dataflow method a 

single buffer is provided and that buffer is broken up into some number of chunks or sub-buffers. 

Imagine a continuous block of data and then we divide it up as shown here on the screen in sub-

buffers.  There are some constraints on a circular dataflow method, Blackfin only uses 16 bits to 

define a circular buffer, or the size of a circular buffer, so it’s a limited to a 64K byte size.  But it’s 

a very simple and efficient means to provide data to a device driver.  When a device driver gets 

told to use a circular dataflow method, then that buffer is provided, the device driver starts at the 

top, starts processing the buffer, as it reaches the end of each sub-buffer the application has an 

option to be notified at the completion of each sub-buffer, or at the end of the buffer completion so 

when it gets to the very bottom of the large buffer, it can notify the application.  Or it doesn’t have 

to notify the application at all if so desired. A very simple way of providing a contiguous chunk of 

data and then breaking it up into some number of sub-buffers, and being notified whenever is 

necessary, at the end of sub-buffer, or at the end of the buffer, the large buffer.  

 

Subchapter 6h: Deciding on Dataflow Method 
How do you decide on which dataflow method to use?  Well the ones that we have here, let’s 

start with the one I just went through, the circular dataflow method.  If your data fits in a 64K byte 

continuous block and it’s streaming type data where you’re processing typically audio, the circular 

dataflow method is a good candidate, dataflow method to use.  Chained with loopback, if it’s 

packet based data, typically bursty dataflows such as Ethernet, UART, USB using Chaining 

without loopback is the way to go for the most part with those types of devices and types of 

dataflow.  Chained with loopback, that should be used with steady dataflow, typically streaming 

type video or streaming type audio when using chaining with loopback and you have the 

streaming command enabled, it avoids clicks, pops, glitches, and would basically always have a 

place to either store data into if we’re taking data in from the device, or we always have a buffer 

to send out if we’re sending data out through the device.  You can imagine that when streaming 

audio or video, chained with loopback is a good method to use.  SequentialIO with and without 

loopback, that’s typically used in half duplex serial type devices.  As I said earlier an I2C 

compatible device like our TWI port uses sequential IO.  That’s very good if you need to specify a 

specific sequence of reads and or writes, and have those happen in a predefined order.  
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What’s the typical programming sequence that an application uses to use the device drivers?  

Well going back to the slides that I showed earlier with the API, we’ve got the application on the 

left side and the device driver on the right.  The first step that’s used, after everything’s been 

initialized, is the application opens the device driver.  In the adi_dev_Open() function, the 

application specifies which device to use, so if there’s three or four devices in the system, which 

one of those three or four to use; what direction it wants the device driver to open the device, be it 

inbound, be it outbound, bi-directional, whatever.  We do the handle exchange where the 

application provides us with the client handle.  That client handle again is used whenever we 

callback the application, whenever the device driver needs to notify the application of an event, it 

passes back the client handle.  Also the device driver is part of the open function, returns to the 

application the handle to the device driver.  All subsequent API calls that use that particular 

device, the application would include that device driver handle.   

 

 

Chapter 7: Programming Sequence 
Subchapter 7a: Chaining Method 
After the driver’s been opened, it’s typically configured.  One mandatory configuration is to specify 

which dataflow method of the various dataflow methods that I talked about earlier, chained, 

chained loopback, sequentialIO, etc...  Any other parameters, default parameters or configuration 

parameters would typically be done immediately after the device was opened.  In the example I’m 

going to show in a few minutes with our UART, we’re going to configure the UART the specific 

baud rate, number of data bits, soft bits, and so forth.  After configuration it’s usually good 

practice to provide the device driver with buffers to process, particularly if the driver has been 

open for inbound traffic or bi-directional traffic.  You want to be sure that the driver has a place to 

store data when we actually turn on dataflow.  The application would provide buffers to either the 

adi_dev_Read() function or the adi_dev_Write() function, or adi_dev_SequentialIO().  No data 

transfer would actually take place at this point; all we’re basically doing here is providing the 

driver with buffers to process.  After we’ve given him the buffers to process, and again that’s an 

option, in some cases we may not need to provide buffers before we enable dataflow, but in 

many cases we do so I’ve illustrated it here for the majority of cases where we would give it 

buffers.  But after the buffers have been provided, we would then go and turn on data flow.  Once 

we turn on data flow, the device driver actually starts moving data, it starts filling buffers as data is 

received from the device if it’s been open for inbound or bi-direction traffic. It also starts trying to 

send data out if the driver has been opened for outbound traffic, or bi-directional traffic.  So it 

basically starts processing any data that was provided in the previous step. 
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When buffers are processed, if they’ve been tagged for a callback, the device driver will notify the 

application, it’ll invoke the application’s callback function notifying the application that the buffer 

has been processed.  Often the application will then go and say okay here’s some more buffers to 

go and process, it can go and call the adi_dev_Read() function, the adi_dev_Write() function or 

adi_dev_SequentialIO().  Again no restrictions on when that is called with the exception of 

loopback, and with loopback obviously you can’t go and provide additional buffers at that point.  

But this is the basic sequence that applications would go and follow.  Open the device, configure 

it, give it some buffers, turn on data flow, when the device driver processes the buffers, it notifies 

back the application that they’ve been processed, the application then optionally goes and gives 

the device driver additional buffers. And that sequence iterates through over and over again.   

 

Chpt 8: UART Example 
Subchapter 8a: Overview 
Let’s map that sequence to a specific example. In the example I’m going to show, it is just a basic 

UART example. It’s just a very simple talk through program. I have a BF537 EZ-Kit and I’ve 

connected the serial port on the EZ-Kit to the serial port on the PC that we’re using here. I’m 

going to start up HyperTerminal from Windows, we’re going to configure it to run at 57600 for a 

baud rate, 8 data bits, 1 stop bit, no parity.  And all we’re going to do is just echo those characters 

back. As we type a character into HyperTerminal it’s going to be sent down to the EZ-Kit, the 

device driver is going to receive that piece of data through a buffer, pass it back to the application. 

The application is simply going to send it right back out the UART and back out to the PC where it 

will be echoed back on the screen.  Very simple example, but it demonstrates the sequence of 

how to go and use the device drivers, we’re going to use the chained dataflow method, so we’ll 

see how that works, and we’ll actually use callbacks because we’re going to be notified when the 

UART driver has processed these buffers.   

 

Subchapter 8b: UART Programming Sequence 
Let’s go back to the sequence that we’re actually going to use and we’ll walk through the steps 

that we’re going to go through in the example.  The first thing the application is going to do, it’s 

going to open the UART driver, it’s going to specify that we want that driver to be open for bi-

directional dataflow. In other words we want to open it for both input and output. We’re going to 

go and configure the UART driver, we’re going to tell it we want the chained dataflow method, 

we’re going to set the baud rate to 57600, we’re going to set 1 stop at 8 data bits, we’re going to 

configure it for how we want it to operate.  We’re going to provide some buffers for the device 

driver to fill.  We’re not going to send anything out right off the bat, but we’re going to provide 

some buffers through the adi_dev_Read() function so that the UART driver will have a place to 
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store data when data is received from the PC, from the HyperTerminal.  We’re then going to turn 

on data flow and once we turn on data flow then what’s going to happen is we’re going to switch 

back into HyperTerminal.  We’ll enter a character and we’ll see that character get received 

through the UART driver and brought into the application. When we go and type in a character, 

the driver is going to make callback to the application saying, “Hey I just received some data.”  

The application in it’s callback function is simply going to send that right back out using the 

adi_dev_Write() function, echo it back out to the HyperTerminal.  Once that buffer has been sent 

out, the driver again is going to notify the application saying, “Okay I’ve sent that buffer out.” The 

application is then going to take that buffer and put it back on the read channel again.  Effectively 

we’re just going to have this sequence operate over and over again.  Where the application is 

going to give the driver a buffer to fill, the driver is going to tell the application when it has 

processed it, the application is then going to send it back out saying, “Here go and send this back 

out to the PC.”  The UART driver is going to come back and say, “Okay I’ve sent that one out.” 

And the application is going to go and re-queue that buffer back on the read channel. We’ll have 

this loop echo or talk through program.   

 

Subchapter 8c: Build/Run UART Example  

Let me bring up VisualDSP.  Here I’ve got VisualDSP, this is VisualDSP 4.0, and I have the 

December (2005) update loaded on this PC.  I’m going to slide my window over so we can see 

what we have as far as files go. The only file in the example is this one little file that I’m showing 

here, uartexample.c, everything else is taken care of automatically by the default settings in 

VisualDSP.  I go up to the top of my function and we’ll just walk our way through the contents of 

this file.  At the very front you’ll see I have here the three includes that I talked about earlier in the 

presentation. I have our “services.h” file where we’re pulling in all the System Services.  I have 

“adi_dev.h” which are the device manager includes all the generic device driver information such 

as the API, common commands and etc…  And then I have the UART device driver itself with all 

the specifics for the UART drivers such as commands for baud rates or for stop bits or what not, 

all the information that’s unique to the UART device driver.   

 

I’m just going to scroll down and I said we’re going to use the chained dataflow method, we’re 

going to use two buffers so I’ve defined this macro for the number of buffers.  This first line here, 

Data, I’m going to highlight here, that’s the actual data in memory where we’re going to store the 

characters that are received.  Remember I talked earlier that buffers and data can actually exist in 

different places.  If we’re doing an application where we’re processing huge amounts of data say 

a video application, we may want to keep our data off in SDRAM, but we may want our buffers to 

be in a different memory space. On a dual core system with L2 memory, we may want to have 
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our buffers in L2 memory for quick access, but keep our data off in SDRAM.  This allows us to 

actually separate out the buffers themselves from the data that they go and process.   

 

The next line here are the buffers themselves, and this construct here, ADI_DEV_1D_BUFFER, 

that’s the buffer that I talked about earlier where I went through the different entries in the data 

structure, that pointer to the data, the element count, width and so forth. That’s this data structure 

right here.  Next is the handle, this is the handle that the UART driver is going to give us back, so 

when we open it, we’re going to fill in this location in memory with that handle to the UART Driver.  

Then every time we talk to the UART Driver after that we’re going to use this value to address it.  

 

Scroll down, I’ve got three functions in this example, the main one that I’m going to show you in 

just a second, and then I’ve got two other ones; I’ve got the callback function and that’s the 

function that the device driver is going to call when it needs to notify me of any events.  And I’ve 

got this other function that initializes the system services.  I’m not really going to go through the 

initialization phase of the system services, to learn more about the system services please review 

the system services module in the BOLD training. I think maybe I’ll just step through that really 

quickly, but any of the details you should really look back at the system services module to see 

how those work. But basically all that’s going to do is just initialize them for us.   

 

Next we have our main program, and the first thing we have in our main program is this UART 

configuration table. And I talked earlier about once a device is opened it typically needs to be 

configured with some type of information.  In the case of our UART drive we need to tell it what 

baud rate we want to run at, what dataflow method we’re using, the number of data bits, the 

number of stop bits and so forth.  We keep that just for convenience here in a table, we could 

pass these commands to a device driver individually or optionally with the adi_dev_Control() 

function, we can pass in a table of parameters that we want it to go and execute. That’s what I’ve 

done here for simplicity, I just put all of our commands that we’re going to go and pass through 

the driver here in this little simple table. Let me just walk through these and explain what they are.  

The first one, we’re going to set our dataflow method and we’re going to use the chained dataflow 

method that I talked about. We’re going to set 8 data bits, so the UART data that we’re going to 

process has got 8 data bits associated with it.  We’re not going to use parity, so I have that set to 

FALSE.  We have one stop bit, and we’re going to set our baud rate to 57600.  And then this last 

entry just terminates the table so the driver knows the end of the configuration table.   

 

Let me just step over this, and now we’re going to go and initialize the services.  I talked earlier 

about the initialization sequence that we go through; the specific order in which it has to occur. 
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I’m going to step into this real quickly and just show you this example here.  Again I’m not going 

to go through all these values here.  This is how we initialize the SDRAM on the part which is 

used for our EBIU service.  And then we’ve got power, where we’re specifying what the actual 

processor is that we’re running, what package it’s in and so forth.  That’s so that we can actually 

go and manage power effectively so the power services knows what frequencies are allowable to 

run at different voltage levels and so forth.   

 

Let me step through this function here.  Here we’re going to initialize the interrupt service, and if 

you think back to that initialization screen, that’s the first one that we needed to do.  So we’re 

going to step over that. Now we’re going to initialize our SDRAM, and the way we do that is we 

call adi_ebiu_Init() function and we pass in that table just above that we looked at.  And again for 

the details on EBIU initialization, power initialization and so forth please review the System 

Services module in the BOLD training. We’ll just step over this, and now we’re going to initialize 

our power service.  Those are the only three services that we’re using in this example.  We’re not 

using DMA, we’re not using any of the other services, so those have been left out of the 

sequence here. So just these three services we’re going to go and initialize.   

 

Now I’m back in my main program, and remember after we initialize the services, then we can go 

and initialize the device manager, so that’s what I’m going to do now, I’m going to go and initialize 

the device manager.  And all I’m going to do is tell the device manager that I’m going to be using 

three, or in this case here, one device driver.  In order to conserve memory, memory is a very 

precious commodity in embedded system, so rather than rely on a dynamic allocation scheme or 

predefined some fixed number of device drivers to use, we allow the application to specify how 

many device drivers are going to be used simultaneously.  And then the application gives us only 

the amount of memory that’s necessary to go and manage that number of device driver 

simultaneously.  That’s what the initialization function is for the device manager.  All I’m going to 

do is give the device manager the memory that it needs to manage this one UART device.  

Before I move on, I want to point out that for each of these API calls, let me just scroll back up to 

that one I just made, I’m storing the result in this variable here called Result.  I talked earlier about 

the return codes, that every API function in all the services and in the device drivers returns a 

result. If that value is zero that means everything worked properly.  If it’s non-zero that’s an 

indication of some error or some informative event.  Typically what happens is an application 

needs to test for zero, if it’s zero then everything worked fine, if it’s non-zero then the application 

needs to take some action to figure out what occurred.  In this example here hopefully everything 

returns as a zero. And if I put my cursor over the result you’ll see that yes indeed, there were no 

errors when we initialized the device manager.   
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Once the device manager has been initialized, the next step I want to do is open the UART driver, 

remember that’s the first step in that sequence slide that I showed just few moments ago.  We’re 

going to open the UART driver, in the comments up here you can see the parameters that we’re 

passing into the UART, to the adi_dev_Open() function. We’re passing in the handle to the device 

manager, so we know which device manager to go and use.  We’re passing in the entry point of 

the device driver that we want to open. This identifies the UART.  There are different entry points 

for each device driver that we have, so there’s a UART entry point for the UART driver, there’s a 

PPI entry point for the PPI driver, our AD1836 audio CODEC, has an entry point for that.  That’s 

how the system knows what specific device driver is being accessed.   

 

Next up is the device number itself, and in this example here we’re opening the zero-th device, or 

the first UART in the system. If we had a system with multiple UARTs we could pass in at zero or 

one or two or whatever device number it is that we wanted to go and open.  In the device drivers 

in System Services all indices start at zero, so zero is actually the first UART.  The next 

parameter is our Client Handle.  And remember I talked about in the adi_dev_Open() function we 

exchange handles, well this is the Client Handle, so every time the device driver wants to callback 

the application it’s going to pass back this Client Handle.  Again this value has no meaning to the 

device driver, supposedly it’s of some significance to the application, typically if an application is 

using multiple device drivers it may use different Client Handles for each of those device drivers 

so that it can uniquely identify which device is calling it back. In this case here I’m just using 

0x12345678, so when we look at our callback function we’ll see that value being passed back.   

 

Next is the address of the UART handle, the device driver is going to fill this location in memory 

with the handle to the UART device that we’re going to open. Every time we go and talk to that 

UART from this point forward we’re going to use this UART handle to uniquely identify that device.  

We’re opening it for bi-directional dataflow, so we want open it for both read data in and send 

data out.  The next parameter is a NULL, we’re not using DMA in this case, the UART driver that 

we have today does not require DMA so I don’t need to pass in a handle to a DMA service or 

anything like that.  The next is a handle to a callback service, to the deferred callback service I 

should say. And if you’ll recall from the System Services module, callbacks can be executed in 

one of two ways, either “live”, which means callbacks are executed typically at hardware interrupt 

time, or “deferred”, meaning we defer that callback for a lower priority.  For simplicity here I’m 

passing a NULL which means our callbacks are going to happen live. A for more information on 

how the callback service works and the specific differences between live callbacks and deferred 

callbacks, again please review the System Services module.  The last parameter that we pass 
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through the adi_dev_Open() function is the address of our callback function.  This is the function 

that the device driver is going to call whenever it needs to notify us of some asynchronous event.  

I’m going to step over this, and I look back at our result; it’s zero so we opened the device 

successfully.  

 

Next up we’re going to configure the UART, so remember that parameter table that I talked about 

at the top?  We’re going to tell it we want to use the chained dataflow method, 8 data bits, no 

parity, 1 stop bit, 57600 baud rate.  We’re going in and configure the device driver now to the 

adi_dev_Control() function.  We’re going to step over that.  And you can see the result is zero, so 

that worked properly. There’s that UART handle that we talked about, so that’s the handle that we 

used to identify that UART for every API function that we make after adi_dev_Open().   

 

Now I’m going to create our buffers.  And if you recall back to the slide that I showed earlier about 

the one dimensional buffer you’ll see these fields right here, that are shown here on the screen.  

There’s the data field, element count, element width, callback parameter, pointer to the next, and 

this additional info parameter.  What I’m going to do now is I have these buffers and I created two 

of them, so we’re going to populate that buffer with the information. We’re going to point the data 

field to the data that we declared for the buffers; that’s where the driver is going to store data as 

it’s received or send data out as we want to send it out.  Each piece of data that we want to 

process is, there’s only one element in that data, and each element is one byte wide.  We’ve 

mapped our buffers to one character, so each buffer can contain a single character, a single 8 bit 

character.  Our callback parameter is next, and we want to be called back whenever the buffer is 

processed so we have a non NULL value in this field. In this case what I’m doing is I’m passing in 

the address of the buffer itself.  When our callback function is invoked, our callback function will 

be told the address of the buffer that has just finished processing.  That way we’ll be able to map 

it back very simply.  I’m pointing to the next buffer in the chain for this pNext value, so I’m creating 

a chain of buffers, in this case here there’s only two links in the chain.  This is going to point to the 

next buffer in the chain.  Additional info, this really isn’t used today but it’s there as a place holder 

as I said just in case a device driver needs additional information that we haven’t thought of yet, 

we have a place holder for that should it occur.  In the case of this example what I’m going to do 

so that we can identify whether these buffers are inbound buffers or outbound buffers, I’m just 

going to put a value in there for us to, just for illustrative purposes so we can see.  What I’m going 

to do is put a zero in that field if it’s an inbound buffer, and I’m going to put a one in that field if it’s 

an outbound buffer. What I’m doing here is I’m creating these buffers for the UART to fill with data, 

so I’m putting a zero in the additional info. Again, not used typically but just for the purposes of 

this example.  
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I’m just going to loop and create these buffers, and the last buffer in the chain I’m going to point 

it’s next pointer at NULL, so we want to have, when we pass in a chain of buffers that chain has 

to be NULL terminated, so the last buffer in the chain points to NULL.  I’m just going to run 

through to this step here. Now what I’ve done is I’ve created these buffers, and I’ve created these 

two buffers, each pointing to one character in memory that we want to go and fill. And I’m going to 

tell the device driver here are these buffers that we want you to go and process.  I’m going to call 

the adi_dev_Read() function to provide those buffers to the device driver.  I step over, we can see 

it executed properly so no errors in the system.   

 

The next function I’m going to do after we’ve configured it, we’ve given it buffers, a place to store 

data when data’s received.  Now all I need to do is just turn on data flow.  I’m going to call the 

adi_dev_Control() function and say turn on data flow.  Before I do that I want to scroll down and 

show you the callback function.  This is the function the device driver is going to invoke when a 

buffer is processed.  Let’s look through that and see exactly what’s going to happen, scroll up 

here so we can see.  Here’s our callback function, we’re passed in three parameters, the client 

handle, remember that’s that 0x12345678 that we used in the adi_dev_Open() function.  That’s 

this value here.  Remember every time the device driver wants to notify the application of an 

event, it passes back that client handle.  That’s the first parameter in the callback function.  

Whenever our callback function is invoked, the client handle should be 0x12345678.   

 

Next up is the event that occurred.  And the event that we’re going to be looking at is this one 

right here, the buffer processed event. The device driver is going to callback this function 

whenever any event occurs, and the one that we’re actually concerned with is the 

ADI_DEV_EVENT_BUFFER_PROCESSED event.  We’re going to do a key, or a switch off of 

that event when it’s passed back.  The last parameter is actually event dependent, so depending 

upon the event that occurred; this last parameter is significant for that event.  This is all described 

in the documentation, but for a buffer processed event the pArg value is the value that was 

passed as the callback parameter value right here.  What we did if you recall is that we put in the 

callback parameter we put the address of the buffer itself.  What’s going to happen in our callback 

function, the device driver is going to call us back whenever it finishes processing a buffer.  It’s 

going to give us back our client handle, our 0x12345678, the event type that we’re expecting is 

this ADI_DEV_EVENT_BUFFER_PROCESSED event, so the device driver is going to say I 

processed this buffer.  And then the last parameter is going to be the address of the buffer itself 

(pointing to the buffer).   
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If we look through the code in the function, the first thing I’m going to do is I know my pArg value 

is going to point to our buffer, so I’m just going to, rather than have to cast it, I’m just, because we 

use a void* here, I’m just going to declare a temporary variable that is of that type so I can avoid 

any casting.  When our function gets called we’re just going to get the address of the buffer.  

We’re going to make sure the event that we’re expecting is indeed the buffer processed event.  

And then we’re going to look at that additional info field. Remember I said that for inbound buffers 

we’re going to put a zero in that field, for outbound buffers we’re going to put a one in that field.  

When we receive an inbound buffer or when we receive a buffer we’re going to make sure that it’s, 

or test whether or not it’s an inbound one.  If it is an inbound buffer, we’re actually going to 

change the tag and say make it an outbound buffer. And again, typically the additional info field 

doesn’t need to be filled in; we’re just doing this for our own purposes so we can illustrate the 

read buffers and the write buffers.  We’re going to make sure that it’s NULL terminated and then 

we’re going to go and send that buffer out to the UART driver. In other words when I’ve received 

a character, when I’ve received a buffer, when the UART tells me I’ve received some data from 

the HyperTerminal, all I’m going to do is I’m going to just go and send it right back out, submit it 

on the write channel and say I want to write this data back out the HyperTerminal.  After the driver 

goes and processes that, it’s going to call us back again after it processes the write buffer.  Again 

we’re going to look at that additional info field, we’ll identify it as being an outbound buffer. Now 

we’re going to change it and say okay now we want to go and put this back on the read channel 

on the read side, or the read queue I should say.   I’m going to put a zero in there so that we 

make sure it’s NULL terminated, and then we’re going to call adi_dev_Read(). I’ll come back to 

this and we’ll step through this step by step, but just to give you a brief over view of how that 

works.   

 

I’m going to put a breakpoint right here in our first location so that way we’ll halt when the device 

driver calls us back.  We’ll go back up to the main program here, I’m going to turn on dataflow so 

this is going to say okay UART, go, start moving the data.  And then all I’m going to do is just sit 

in the loop not doing anything, just waiting for characters to come in.  If I click run, now you’ll see 

down at the bottom of the screen we’re actually running.  We’re really going to sit in this wait 

group, in this while loop here waiting for characters to be received.  I’m going to scroll this over so 

we can see some of the information here.  I’m using VisualDSP, and I’ve got the Blackfin memory 

here, we’re running so everything’s grayed out.  But I’ve got our data buffers right up here so 

you’ll see, hopefully see the characters that we’re going to type in to HyperTerminal, they should 

appear up here in this field up here.  Let me go into HyperTerminal, here’s HyperTerminal, I’ve 

got it configured to match the settings that we have for the device driver, 57600, 8 data bits, no 

parity, 1 stop bit, and I’m going to type in a character so I’m going to press the letter ‘a’. And when 
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I type the letter ‘a’, HyperTerminal is going to send that character out to the EZ-Kit, our driver is 

going receive that character and is going to complete process, it’s going to store it in our buffer, 

and notify the application by calling the callback function, that’s where we have the breakpoints.  

When I press the letter ‘a’ here we should see VisualDSP stop and hit our breakpoint.  I press ‘a’ 

and I go back into VisualDSP, see down here at the bottom of the screen we’ve halted, and we’re 

actually in our callback function.   

 

The driver has said I’m notifying the application of some event, so let’s just step through the 

callback function, and we’re going to do a case of the event, now the event we’re expecting is this 

one right here, that the data buffer has been processed.  Now we’re going to check and be sure 

it’s an inbound buffer, or test to see if it’s an inbound buffer.  And it should be.  In the top right 

here you’ll see there’s that letter ‘a’ that I typed in, so you’ll see that data that we talked about, so 

if I scroll back up to where we defined the buffers, I said for each of these buffers, here’s the data 

that we’re going to go and process so that’s the location of memory so you can see where it’s 

stored the data.  Yes indeed, it’s an inbound buffer, so now I’m going to do just do our little trick 

so we see what’s happening, touch the additional info field and put a one in there so I’m going to 

send it out. I’m going to make sure it’s NULL terminated so there’s no other, there’s just one 

buffer in this chain, there’s not a whole chain of buffers that we’re sending out.  And then I’m 

going to call adi_dev_Write(), and via adi_dev_Write() I’m just going to say UART driver here’s 

another buffer I want you to go and process. I want you to go and send this out, so there’s our 

buffer.  When I hit run now what’s going to happen is we’re going to give that buffer to the device 

driver, it’s going to send it back out to HyperTerminal, and then it’s going to call us back again 

after that buffer has been sent out. We’ll just go back into HyperTerminal, and you’ll see that 

there’s nothing has been echoed back to the screen yet. Let me click run, and what should 

happen is that we’re going to go and send that out and we’ll immediately come back into our 

breakpoint because the driver will send the buffer out it’ll want to call us back again.  I click run 

and sure enough we hit our breakpoint again.  I go back into HyperTerminal, you’ll see up here 

that it’s certainly echoed back the letter ‘a’ that I had typed in.  And it’s called us back. Now if I 

step through the callback function, buffer processed event.  This time it’s a buffer that was sent 

out, our additional info field we had set to one. Now all we’re going to do is we’re going to set it to 

be a zero again because we’re going to go and give it back to the UART to fill with more data.  

Terminate it, NULL terminate the chain so there’s only one buffer in the chain. And then we’re 

going to call adi_dev_Read().  If I run again we should just basically start to see us just running 

because the driver was saying here take this buffer, go and fill it with more data and let us know 

when you’re done. If I click run, see we’re indeed running and the driver is now waiting for 

another piece of data to come in.  And will call us back. This time if I go back into HyperTerminal 
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and type the letter ‘b’ we should hit our breakpoint again.  There we go.  We’re back in our 

callback function, if we look at the data you’ll see it’s a letter ‘b’ now. Again we’re going to go 

through that same loop again, we’re going to mark it as an outbound buffer, NULL terminate it, 

again we only have one buffer in the chain, and send it back out.  Run again with adi_dev_Write(), 

we should echo the ‘b’ character back out to the screen.  Sure enough there it is.  Back into 

VisualDSP, and the driver is now telling us okay I’ve sent that buffer out, and notifying the 

application that that buffer has been processed. Again I’m going to step through, tag it as an 

inbound buffer, make sure it’s the only buffer in the chain, and then put it again back out on the 

adi_dev_Read() function.  

 

I take away our breakpoint now so we don’t do any more halts, click run, if I go back into 

HyperTerminal you’ll see that we just keep echoing characters back.  A very simple example that 

shows the basic steps of using the device driver, how a driver is opened, how it’s configured, how 

buffers are provided for inbound traffic, how buffers are provided for outbound traffic, how the 

device driver notifies the application when buffers have been processed.  You can see it’s a very 

simple example.  Also another thing to note is that aside from initialization of the system services, 

everything else was taken care of by the device driver itself.  UART interrupts have been hooked, 

if we were using DMA, we don’t in this case, but DMA would have been managed appropriately.  

The UART device driver actually made calls in to the power management service, to determine 

the system clock frequency which is used to calculate the divider ratios for the UART so it could 

run at 57600 baud rate.  All that happens within the drivers themselves, and again that’s all built 

upon the system services. We’re putting together a collectively between the services and the 

drivers, a very powerful and a very easy to use environment that applications can use to very 

quickly get code up and running and take their applications to production much quicker then in 

the past when device drivers had to be created for each device, each customer had to create 

their own device for their own specific application and so forth.  By providing these device drivers 

we can actually shorten our customer’s time to market significantly.  

 

Chapter 9: Conclusion 
Subchapter 9a: Additional Information 
Okay let me go back into the presentation.  In conclusion I think we’ve shown that the device 

driver’s allow very fast development time by providing a stable software base with the services, 

with the device drivers.  Less reinvention, applications or users don’t need to create everything 

from scratch they can build upon the System Services that we have, the device drivers that we 

provide. Very modular software so that compatibility the drivers work concurrently with one 

another.  Integration, multiple software components are working concurrently, hardware 
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resources are managed effectively.  And portability; we could just as easily have taken that 

example that I ran on the BF537 EZ-Kit and run that exact same example on a BF533 EZ-Kit or a 

BF561 dual-core EZ-Kit.  There’s really no changes at all that are required to the application 

because the API to the device driver is the same, the services operate the exact same way, 

functionality operates the exact same way.  A very efficient way for customers to move from a 

processor that exists today to in the future where we have better, stronger, faster processors to 

migrate their applications extremely quickly to the latest processors that we provide.  

 

For additional information the pointers to the documentation, our Device Driver and System 

Services Manual is located in the technical library section on Analog’s website, located here at 

this address. We’ve augmented that with an addendum in September of 2005 with some 

additional information about newer services and some of the additional device driver capabilities 

that have been added in.  There will be more documentation coming, In the VisualDSP, 

installation directory, look in the directory Blackfin/doc and you’ll start to see additional 

information as it becomes available, as more documentation is provided, as additional drivers are 

provided with the distribution, we’ll have additional documentation, locate that in the 

documentation directory in the VisualDSP installation.  

 

If you have any specific questions you’d like to ask please click the ‘ask a question’ button at the 

bottom of your screen, or send an email to processorsupport@analog.com .  Thank you very 

much for watching the device driver module of the BOLD Training, hopefully it’s been helpful to 

you.  

Thanks again.  

 

 

 
 


