

The World Leader in High Performance Signal Processing Solutions

Interfacing Audio and Video Converters to Blackfin Processors

Presented By: David Katz Senior Blackfin Applications Engineer

About this Module

- This presentation will familiarize the user with the principles behind connecting Blackfin processors to audio and video devices.
- Prerequisites: Basic working knowledge of audio and video fundamentals

Angelitiers Power Management Processor

Module Outline

Overview of Blackfin A/V Connectivity

Connecting to Audio Converters

- Applicable Blackfin Audio Peripherals
- Examples of HW/SW connections to Blackfin
- Interfacing Tips and Tricks
- Available Audio Collateral on Blackfin

Connecting to Video Converters

- Digital Video Refresher
- Applicable Video Peripheral(s)
- Examples of HW/SW connections to Blackfin
- Interfacing Tips and Tricks
- Available Video Collateral on Blackfin

Conclusion

Why is Blackfin well-suited for A/V applications?

Connecting to Audio Converters

Blackfin Audio Interface Usage

- Two-Wire Interface (TWI) and Serial Peripheral Interface (SPI)
 - Forward channel used to configure and control audio converters
 - Reverse channel relays feedback info from converters

SPORT

- Used as data channel for audio data
 - SPORT TX connects to audio DAC
 - SPORT RX connects to audio ADC
 - Full-duplex SPORT RX/TX connects to audio codec
- In some codecs (e.g., AC97), SPORT also can serve as the codec control channel

SPI Control Interface

- Compatible with Motorola SPI standard
- Full-duplex serial interface operating up to 33 Mbps
- Supports Master/Slave and Multimaster environments
- 3-pin communication interface

MOSI = Master Output, Slave Input MISO = Master Input, Slave Output SCK = Serial Clock

SPISS = SPI Chip Select Input

Allows another SPI device (Master) to select the processor (Slave)

SPISELx = SPI Slave Selects

Allow the processor (Master) to select other SPI devices (Slaves)

SPISS U	4			111
scк 🖳		V7		
MOSI		XX		
MISO		XX	X_X_	
8				ANALOG

TWI Control Interface

- I²C-compatible Two-Wire Interface
- Provides simple exchange method of control & data between multiple devices
- Simultaneous Master and Slave operation
- Supports speeds up to 400 kbits/sec
- SCL (clock) and SDA (data) pins comprise the interface

SPORT: High-speed synchronous serial port

- Fully independent RX and TX channels
- Primary and secondary data RX/TX pins
- Operates up to 66 Mbps (133 Mbps including secondary RX/TX channel)
- Supports word lengths of 3-32 bits
- Programmable internal/external clocks and frame syncs
- Built-in hardware µ-Law and A-Law companding (for vocoders)
- Support for multichannel (TDM) interfaces for networked communication
- I²S signaling support

Pin	Description		
DTxPRI	Transmit Data Primary		
DTxSEC	Transmit Data Secondary		
TSCLKx	Transmit Clock		
TFSx	Transmit Frame Sync		
DRxPRI	Receive Data Primary		
DRxSEC	Receive Data Secondary		
RSCLKx	Receive Clock		
RFSx	Receive Frame Sync		

SPORT I²S Functionality

- Industry standard developed by Philips for stereo audio transmission over a 3-wire interface
- Data always transmits in MSB format
- Consists of Serial Clock, Word Select (Left/Right) and Data
- Each SPORT accommodates 4 TX and 4 RX I²S audio channels

OUIRT .

OWEr

Tips & Tricks for Connecting to Audio Converters

🔶 TWI

 Both SCL and SDA need pullup resistors; they are never driven high (per I²C spec)

SPI

Connect all MISO pins to MISO pins, and MOSI to MOSI
 Tie all MOSI pins together; tie all MISO pins together

• Make sure MOSI and MISO pins are not swapped

SPORT

• SPORTs in Multi-Channel Mode that master the clocks and frame syncs should not connect TFS to RFS.

- In this mode, the TFS frames the active TX channel data, acting as a TX Data Valid (TDV) pin.
- Use proper termination for clock and frame sync signals

Additional Collateral for Audio Development

Software

• VisualDSP++ Tools Suite

- Includes peripheral drivers for configuration via standard API
- Includes complete audio device drivers
 - Standard API for audio converters, with many devices supported
 - -AD1871 ADC
 - -AD1854 DAC
 - -AD1836A codec

• EZ-Kit and EZ-Extender Card code examples

- Integrate peripheral and codec drivers
- Provide examples of data flows and system configuration

Hardware

• EZ-Kits + EZ-Extender Cards include on-board audio converters

- Allow for quick system prototyping
- Reference Schematics and BOMs available

VisualAudio® algorithm development tool

Streamlines design of audio systems

Connecting to Video Converters

- System Video Flow
- Some Digital Video Basics
 - ITU-R BT.601
 - ITU-R BT.656
- Blackfin Parallel Peripheral Interface (PPI)
- Connecting to Video Sources
- Connecting to Video Displays
- Sample Video System Diagram

System Video Flow

Digital Video Refresher

ITU-R BT.601 Concepts

Specifies encoding parameters for digital TV

Color Spaces Supported

- RGB (Red, Green, Blue)
 - Intuitive format, but channels are highly correlated
 - 3 color values per pixel
 - RGB888 format implies 8 bits each of Red, Green and Blue
 - RGB666 or RGB565 imply 5 or 6 bits per color channel
- YCbCr (Y=luma, Cx=chroma)
 - Generated via RGB signals
 - Highly uncorrelated, thus providing better compression characteristics
 - 4:2:2 YCbCr is recommended by BT.601
 - One luma and one chroma (Cr or Cb) value per pixel

8-bit or 10-bit quantization of RGB or YCbCr components

•NTSC and PAL normalized to 720 active pixels per line

NTSC (60 fields/sec) has 525 lines (including blanking)

PAL (50 fields/sec) has 625 lines (including blanking)

ITU-R BT.601 Timing

- HSYNC is the horizontal synchronization signal. It demarcates the start of active video on each row (left to right) of a video frame.
- VSYNC is the vertical synchronization signal. It defines the start (top to bottom) of a new video image.
- FIELD distinguishes, for interlaced video, which field (odd or even) of a video frame is currently being displayed. This signal is not applicable for progressive-scan video systems.
- CLOCK is the data clock for each pixel component.

ITU-R BT.656 Concepts

- Defines the physical interfaces and data streams necessary to implement ITU-R BT.601
- Bit-parallel and bit-serial modes
- 27 MHz nominal clock and 8 or 10 data lines (for bit-parallel mode)
- Embedded hardware signaling (H, V, F)
- Supports interlaced and progressive formats

ITU-R BT.656 NTSC and PAL Frames

POWER

VENSELO & CONVER

000

ITU-R BT.656 Data Stream Format

AB = Control Byte

Blackfin Video Interface: PPI

Parallel Peripheral Interface

- Supports ITU-R BT.656 and BT.601 Video Converter Interfaces
- General-Purpose Mode supports data converter apps

Parallel Peripheral Interface

- Bidirectional, half-duplex interface
- Supports bit-parallel ITU-R BT.656 recommendation
- Up to 16 data lines, 1 clock, 3 Frame Syncs
- Programmable signal polarity choices for syncs and clock

Bandwidth-saving features

- Selective reception of BT.656 Active and Blanking regions
- Can optionally ignore Field 2 of a BT.656 frame
- Can skip even or odd data elements
- Works hand-in-hand with 2D DMA Engine

Connecting to Video Sources

Connecting to CMOS Image Sensors

- Blackfin EZ-Extender cards and EZ-Kits support connection to products from many major vendors
 - Micron
 - Omnivision
 - Kodak

 Example: Micron's CMOS Imager "Headboard" provides a common 26-pin interface for a whole family of sensors

Connecting to Analog Sources: ADV7183B Video ADC

Connecting to Video Displays

Connecting to Analog Displays: ADV7174/ADV7179 Video DAC

Connecting to Digital TFT-LCD Panels

- Use ITU-R BT.656 mode whenever possible
 Eliminates timing incongruities in sync modes
- Pay close attention to default converter settings
- Make sure clock source is as clean as possible
- For RGB565 connections, do not ground the LSB of R or B
 - Instead, tie the MSB of Red to the LSB of Red at the LCD panel
 - Do the same for Blue
 - This insures a full dynamic range is achievable on R and B channels

Additional Collateral for Video Development

Software

- VisualDSP++ Tools Suite
 - Includes peripheral drivers for configuration via standard API
 - Includes many complete video device drivers
 - ADV7183B
 - ADV7171, ADV7174, ADV7179
 - CMOS Sensors from Micron, Kodak and Omnivision
 - LCD displays from multiple vendors

• EZ-Kit and EZ-Extender Card code examples

- Integrate peripheral and codec drivers
- Provide examples of data flows and system configuration

Hardware

EZ-Kits + EZ-Extender Cards

- Include CMOS sensor and LCD panel interfaces
- Allow for quick system prototyping
- Reference Schematics and BOMs available

Video System Example

Conclusion

- The Blackfin Processor architecture is very well suited for multimedia system design
- Blackfin devices provide versatile connectivity to A/V peripherals
- Collateral available to speed system design

Additional Information

- Collateral to jump-start development
- VisualDSP++ tools suite for Blackfin Processors
 <u>www.analog.com/blackfin/visualdsp</u>
- Blackfin EZ Kits and EZ-Extender Cards
 <u>www.analog.com/evaluationkits</u>
- Application Notes
 <u>www.analog.com/ee-notes</u>
- BOLD online training modules
 <u>www.analog.com/BOLD</u>
- VisualAudio® algorithm development tool
 <u>www.analog.com/visualaudio</u>
- Embedded Media Processing book
 <u>www.theEMPbook.com</u>
- Click "Ask A Question" button Or send an email to <u>Processor.support@analog.com</u>

