Interfacing Audio and Video Converters to Blackfin Processors

Presented By:
David Katz
Senior Blackfin Applications Engineer
About this Module

- This presentation will familiarize the user with the principles behind connecting Blackfin processors to audio and video devices.

- Prerequisites: Basic working knowledge of audio and video fundamentals
Module Outline

- Overview of Blackfin A/V Connectivity
 - Connecting to Audio Converters
 - Applicable Blackfin Audio Peripherals
 - Examples of HW/SW connections to Blackfin
 - Interfacing Tips and Tricks
 - Available Audio Collateral on Blackfin
 - Connecting to Video Converters
 - Digital Video Refresher
 - Applicable Video Peripheral(s)
 - Examples of HW/SW connections to Blackfin
 - Interfacing Tips and Tricks
 - Available Video Collateral on Blackfin
- Conclusion
Basic A/V System Connections

Audio DAC

Blackfin Processor

Video DAC

Audio ADC

Video ADC

Microphone

Camera
Why is Blackfin well-suited for A/V applications?

- Multimedia-grade performance
 - High clock speeds
 - Flexible instruction set
- Powerful Connectivity and Data Handling Capabilities
 - DMA capabilities
 - Peripheral mix
- Scalability across and within applications
 - Dynamic Power Management
 - Wide Product Portfolio
Connecting to Audio Converters
Blackfin Audio Interface Usage

- **Two-Wire Interface (TWI) and Serial Peripheral Interface (SPI)**
 - Forward channel used to configure and control audio converters
 - Reverse channel relays feedback info from converters

- **SPORT**
 - Used as data channel for audio data
 - SPORT TX connects to audio DAC
 - SPORT RX connects to audio ADC
 - Full-duplex SPORT RX/TX connects to audio codec

- In some codecs (e.g., AC97), SPORT also can serve as the codec control channel
SPI Control Interface

- Compatible with Motorola SPI standard
- Full-duplex serial interface operating up to 33 Mbps
- Supports Master/Slave and Multimaster environments
- 3-pin communication interface
 - MOSI = Master Output, Slave Input
 - MISO = Master Input, Slave Output
 - SCK = Serial Clock
- **SPISS = SPI Chip Select Input**
 - Allows another SPI device (Master) to select the processor (Slave)
- **SPISELx = SPI Slave Selects**
 - Allow the processor (Master) to select other SPI devices (Slaves)
TWI Control Interface

- I²C-compatible Two-Wire Interface
- Provides simple exchange method of control & data between multiple devices
- Simultaneous Master and Slave operation
- Supports speeds up to 400 kbits/sec
- SCL (clock) and SDA (data) pins comprise the interface

Source: Philips I²C Spec
SPORT: High-speed synchronous serial port

- Fully independent RX and TX channels
- Primary and secondary data RX/TX pins
- Operates up to 66 Mbps (133 Mbps including secondary RX/TX channel)
- Supports word lengths of 3-32 bits
- Programmable internal/external clocks and frame syncs
- Built-in hardware μ-Law and A-Law companding (for vocoders)
- Support for multichannel (TDM) interfaces for networked communication
- I²S signaling support

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTxPRI</td>
<td>Transmit Data Primary</td>
</tr>
<tr>
<td>DTxSEC</td>
<td>Transmit Data Secondary</td>
</tr>
<tr>
<td>TSCLKx</td>
<td>Transmit Clock</td>
</tr>
<tr>
<td>TFSx</td>
<td>Transmit Frame Sync</td>
</tr>
<tr>
<td>DRxPRI</td>
<td>Receive Data Primary</td>
</tr>
<tr>
<td>DRxSEC</td>
<td>Receive Data Secondary</td>
</tr>
<tr>
<td>RSCLKx</td>
<td>Receive Clock</td>
</tr>
<tr>
<td>RFSx</td>
<td>Receive Frame Sync</td>
</tr>
</tbody>
</table>
SPORT I²S Functionality

- Industry standard developed by Philips for stereo audio transmission over a 3-wire interface
- Data always transmits in MSB format
- Consists of Serial Clock, Word Select (Left/Right) and Data
- Each SPORT accommodates 4 TX and 4 RX I²S audio channels
Connecting to Audio ADCs: AD1871
Connecting to Audio DACs: AD1854
Tips & Tricks for Connecting to Audio Converters

- **TWI**
 - Both SCL and SDA need pullup resistors; they are never driven high (per I²C spec)

- **SPI**
 - Connect all MISO pins to MISO pins, and MOSI to MOSI
 - Tie all MOSI pins together; tie all MISO pins together
 - Make sure MOSI and MISO pins are not swapped

- **SPORT**
 - SPORTs in Multi-Channel Mode that master the clocks and frame syncs should not connect TFS to RFS.
 - In this mode, the TFS frames the active TX channel data, acting as a TX Data Valid (TDV) pin.
 - Use proper termination for clock and frame sync signals
Additional Collateral for Audio Development

Software
- **VisualDSP++ Tools Suite**
 - Includes peripheral drivers for configuration via standard API
 - Includes complete audio device drivers
 - Standard API for audio converters, with many devices supported
 - AD1871 ADC
 - AD1854 DAC
 - AD1836A codec
- **EZ-Kit and EZ-Extender Card code examples**
 - Integrate peripheral and codec drivers
 - Provide examples of data flows and system configuration

Hardware
- **EZ-Kits + EZ-Extender Cards include on-board audio converters**
 - Allow for quick system prototyping
 - Reference Schematics and BOMs available

VisualAudio® algorithm development tool
- Streamlines design of audio systems
Connecting to Video Converters
 Outline for Connecting to Video Converters

- System Video Flow
- Some Digital Video Basics
 - ITU-R BT.601
 - ITU-R BT.656
- Blackfin Parallel Peripheral Interface (PPI)
- Connecting to Video Sources
- Connecting to Video Displays
- Sample Video System Diagram
System Video Flow

Video Sources
- Digital CMOS sensor
- Analog video camera or CCD
- Storage media
- Network

Outside World
- HW Decoder (A/D converter)

Video Displays
- TV or Monitor
- HW Encoder (D/A converter)

Blackfin Processor
- Enhancement/Analysis/Compression
- Uncompression/Formatting

Digital LCD panel
Digital Video Refresher
ITU-R BT.601 Concepts

- Specifies encoding parameters for digital TV

- Color Spaces Supported
 - RGB (Red, Green, Blue)
 - Intuitive format, but channels are highly correlated
 - 3 color values per pixel
 - RGB888 format implies 8 bits each of Red, Green and Blue
 - RGB666 or RGB565 imply 5 or 6 bits per color channel
 - YCbCr (Y=luma, Cx=chroma)
 - Generated via RGB signals
 - Highly uncorrelated, thus providing better compression characteristics
 - 4:2:2 YCbCr is recommended by BT.601
 - One luma and one chroma (Cr or Cb) value per pixel

- 8-bit or 10-bit quantization of RGB or YCbCr components

- NTSC and PAL normalized to 720 active pixels per line
 - NTSC (60 fields/sec) has 525 lines (including blanking)
 - PAL (50 fields/sec) has 625 lines (including blanking)
ITU-R BT.601 Timing

- **HSYNC** is the horizontal synchronization signal. It demarcates the start of active video on each row (left to right) of a video frame.

- **VSYNC** is the vertical synchronization signal. It defines the start (top to bottom) of a new video image.

- **FIELD** distinguishes, for interlaced video, which field (odd or even) of a video frame is currently being displayed. This signal is not applicable for progressive-scan video systems.

- **CLOCK** is the data clock for each pixel component.
ITU-R BT.656 Concepts

- Defines the physical interfaces and data streams necessary to implement ITU-R BT.601
- Bit-parallel and bit-serial modes
- 27 MHz nominal clock and 8 or 10 data lines (for bit-parallel mode)
- Embedded hardware signaling (H, V, F)
- Supports interlaced and progressive formats
ITU-R BT.656 NTSC and PAL Frames

NTSC

PAL
ITU-R BT.656 Data Stream Format

End of Active Video

- EAV Code (H=1)
 - FF 00 00 AB 80 10 80 10

- Horizontal Blanking
 - 80 10 FF 00 00

- SAV Code (H=0)
 - AB Cr Y Y Y Y Cr Y Y

Start of Active Video

Start of Next Line

Digital Video Stream

4 268 (280 for PAL) 4 1440

1716 (1728 for PAL)

AB = Control Byte
Blackfin Video Interface: PPI
Parallel Peripheral Interface

- Supports ITU-R BT.656 and BT.601 Video Converter Interfaces
- General-Purpose Mode supports data converter apps
Parallel Peripheral Interface

- Bidirectional, half-duplex interface
- Supports bit-parallel ITU-R BT.656 recommendation
- Up to 16 data lines, 1 clock, 3 Frame Syncs
- Programmable signal polarity choices for syncs and clock

Bandwidth-saving features
- Selective reception of BT.656 Active and Blanking regions
- Can optionally ignore Field 2 of a BT.656 frame
- Can skip even or odd data elements
- Works hand-in-hand with 2D DMA Engine
Connecting to Video Sources
Connecting to CMOS Image Sensors

- **Blackfin Processor**
 - PPI_FS1
 - PPI_FS2
 - PPI_CLK
- **Pixel Data[7:0]**
- **CMOS Imager**
- **Master Clock**
- **HSYNC (Line Valid)**
- **VSYNC (Frame Valid)**
- **Pixel Clock**
- **I²C Control Bus**
- **Serial Clock (SCK)**
- **Serial Data (SDA)**
Connecting to CMOS Image Sensors

- Blackfin EZ-Extender cards and EZ-Kits support connection to products from many major vendors
 - Micron
 - Omnivision
 - Kodak

- Example: Micron’s CMOS Imager “Headboard” provides a common 26-pin interface for a whole family of sensors
Connecting to Analog Sources: ADV7183B Video ADC
Connecting to Video Displays
Connecting to Analog Displays: ADV7174/ADV7179 Video DAC
Connecting to Digital TFT-LCD Panels
Tips and Tricks for Connecting to Video Devices

- Use ITU-R BT.656 mode whenever possible
 - Eliminates timing incongruities in sync modes

- Pay close attention to default converter settings

- Make sure clock source is as clean as possible

- For RGB565 connections, do not ground the LSB of R or B

 - Instead, tie the MSB of Red to the LSB of Red at the LCD panel
 - Do the same for Blue
 - This insures a full dynamic range is achievable on R and B channels
Additional Collateral for Video Development

Software
- **VisualDSP++ Tools Suite**
 - Includes peripheral drivers for configuration via standard API
 - Includes many complete video device drivers
 - ADV7183B
 - ADV7171, ADV7174, ADV7179
 - CMOS Sensors from Micron, Kodak and Omnivision
 - LCD displays from multiple vendors
- **EZ-Kit and EZ-Extender Card code examples**
 - Integrate peripheral and codec drivers
 - Provide examples of data flows and system configuration

Hardware
- **EZ-Kits + EZ-Extender Cards**
 - Include CMOS sensor and LCD panel interfaces
 - Allow for quick system prototyping
 - Reference Schematics and BOMs available
Video System Example

Video Pass-Through

1. **ADV7183B**
2. **BF561 (MJPEG Encoder)**
3. **ADV7179**
4. **USB NET2272**
5. **EZ-USB EXTENDER**
6. **ADSP-BF561 EZ-KIT**

- **Stack EZ-USB Extender onto ADSP-BF561 EZ-KIT**
- **USB 2.0 to Host PC**
 - Compressed Video flows from Blackfin to Host PC
 - *.AVI files get stored to local hard drive
Conclusion

- The Blackfin Processor architecture is very well suited for multimedia system design
- Blackfin devices provide versatile connectivity to A/V peripherals
- Collateral available to speed system design
Additional Information

- **Collateral to jump-start development**
 - VisualDSP++ tools suite for Blackfin Processors
 www.analog.com/blackfin/visualdsp
 - Blackfin EZ Kits and EZ-Extender Cards
 www.analog.com/evaluationkits
 - Application Notes
 www.analog.com/ee-notes
 - BOLD online training modules
 www.analog.com/BOLD
 - VisualAudio® algorithm development tool
 www.analog.com/visualaudio
 - Embedded Media Processing book
 www.theEMPbook.com

- **Click “Ask A Question” button**
 Or send an email to Processor.support@analog.com