
The World Leader in High Performance Signal Processing Solutions

An Introduction to the
VisualDSP++ Kernel (VDK)

Presented by:
Ken Atwell

Product Line Manager

2

About This Module

This module discusses the VisualDSP++ kernel (VDK)
concepts and capabilities.

It is recommended that users have:
A working knowledge of software terminology
Previous experience with other commercial or home-grown
operating systems

3

Module Outline

Introduction
Operating system choices for Blackfin
Introducing the VDK

Capabilities of the VDK
On-line Demo: Building and Debugging VDK Projects
Timings and Sizes

Footprints and benchmarks

4

OS Choices for Blackfin Processors

uClinux

Find third party RTOS options at:
http://dspcollaborative.analog.com/developers/
DSP_ThirdParty_Search_Home.asp

5

Introducing the VisualDSP++ Kernel (VDK)

Small, robust kernel bundled with VisualDSP++
Designed for application with light-weight OS requirements
No additional cost or run-time licenses/fees
Fully supported and maintained along with the rest of
VisualDSP++

Supports all current and future Blackfin derivatives
Complements and co-exists with System Services and its
device drivers

6

VDK Concepts

Threads
Priority and scheduling

Pre-emptive, cooperative, and time-slicing
Critical and unscheduled regions
Semaphores, including periodic
Messages
Beyond discussion today, but available in VDK

Events and event bits
Multi-processor messaging
Memory pools
Device flags

Fully documented in VisualDSP++ help and PDF manuals

7

Capabilities of the VDK

8

Threads and Priorities (1)

Lowest

Highest
Arbitrary number of threads
running at 31 priority levels

Preemptive scheduling by
priority, cooperative or time
sliced within a priority
Priority can be statically or
dynamically assigned

Threads may be instantiated
at boot time or later at run
time

Each gets its own stack
Each thread implements four
functions

Create, run, destroy, error
All major execution occurs in
“run”, many threads never exit
run
A thread’s life ends when the
“run” function exits

9

Threads and Priorities (2)

VDK_ClearThreadError()
VDK_CreateThread()
VDK_CreateThreadEx()
VDK_DestroyThread()
VDK_FreeDestroyedThreads()
VDK_GetLastThreadError()
VDK_GetLastThreadErrorValue()
VDK_GetPriority()
VDK_GetThreadID()
VDK_GetThreadStackUsage()
VDK_GetThreadStatus()
VDK_ResetPriority()
VDK_SetPriority()
VDK_SetThreadError()
VDK_Sleep()
VDK_Yield()

Arbitrary number of threads
running at 31 priority levels

Preemptive scheduling by
priority, cooperative or time
sliced within a priority
Priority can be statically or
dynamically assigned

Threads may be instantiated
at boot time or later at run
time

Each thread gets its own stack
Each thread implements four
functions

Create, run, destroy, error
All major execution occurs in
“run”, many threads never exit
run
A thread’s life ends when the
“run” function exits

10

Critical and Unscheduled Regions

VDK_PopCriticalRegion()
VDK_PopNestedCriticalRegions()
VDK_PopNestedUnscheduled\

Regions()
VDK_PopUnscheduledRegion()
VDK_PushCriticalRegion()
VDK_PushUnscheduledRegion()

Critical regions disables all
interrupts and context
switches

Use with discretion to perform
actions that cannot be
interrupted
Typical used in test-and-set or
read-modify-write style
operations

Unscheduled regions are
less drastic, disabling the
VDK context switch only

Other interrupts are allowed to
continue

11

Semaphores (1)

A facility for coordination
between threads or from an ISR
to a thread
A semaphore can be used to a
control access to a shared
resource in threads

For example, protecting a buffer
from simultaneous read and write

VDK_CreateSemaphore()
VDK_DestroySemaphore()
VDK_MakePeriodic()
VDK_PendSemaphore()
VDK_PostSemaphore()
VDK_RemovePeriodic()

12

Semaphores (2)

A facility for coordination
between threads or from an ISR
to a thread
A semaphore can be used to a
control access to a shared
resource in threads

For example, protecting a buffer
from simultaneous read and write

Many semaphores are of a
Boolean nature (yes or no), but
they can also be used to allow
multiple access, “counting
semaphores”
Semaphores may be
periodically and automatically
posted by the VDK

VDK_CreateSemaphore()
VDK_DestroySemaphore()
VDK_MakePeriodic()
VDK_PendSemaphore()
VDK_PostSemaphore()
VDK_RemovePeriodic()

13

Messages

A message is a targeted
transmission from one
thread to another

Message type
Payload address and size

An arbitrary amount of information
of any type may be passed
between two threads

Facilities for multi-
core/processor messaging
exist

VDK_CreateMessage()
VDK_DestroyMessage()
VDK_ForwardMessage()
VDK_FreeMessagePayload()
VDK_GetMessageDetails()
VDK_GetMessagePayload()
VDK_GetMessageReceiveInfo()
VDK_MessageAvailable()
VDK_PendMessage()
VDK_PostMessage()
VDK_SetMessagePayload()

14

On-line Demo:
Building and Debugging VDK Projects

Project Window/VDK tab
Thread creation template
VDK Status Window
VDK History Window

15

Sizes and Timings

16

VDK Static Memory Footprints

953613304Add a history window of 512 events and full
instrumentation (debugging scenario)

11205384One C-language thread, no API calls

12929260Add message passing
12527068Add critical regions
12526916Two threads, usage of a static semaphore
12085584Two C-language threads, no API calls

DataCodeApplication

Size of VDK libraries’ contributions, not entire application. Measured under
VisualDSP++ 4.5 (base release) with dead code/data elimination enabled. Sizes are in
bytes.

17

Cycle Counts for Performance-Sensitive
Activities

2,352Create a new thread, no change of thread
199Push a critical region, increment a global variable, pop

15,311Boot (from reset vector to first instruction of highest
priority thread’s run function)

CyclesEvent

286Post semaphore, change of thread
76Post semaphore, no change of thread

722Tick, change of thread
67Tick, no change of thread

Measurements with entire application in internal memory. The application contains
five running threads. Measured with VisualDSP++ 4.5 (base release). Processor was
an ADSP-BF533 r0.5.

18

Conclusion

VDK is provided at no additional cost with VisualDSP++
Designed to be a robust solution for light-weight requirements
Many commercial RTOS’s are also available for Blackfin

Basic facilities include threads, prioritization, semaphores,
messaging, and critical and unscheduled regions

Other facilities are available and documented as part of
VisualDSP++

VDK is well integrated into the VisualDSP++ user interface,
with facilities to configure VDK, generate template thread
code, and display status and history while debugging your
application

19

For Additional Information

Review other BOLD topics (especially System Services and
drivers)
Take a test drive of VisualDSP++ and/or get an EZ-KIT Lite

http://www.analog.com/processors/VisualDSP/testDrive.html
Examples demonstrating all major features

…\Blackfin\Examples\No Hardware Required\VDK
Consult detailed documentation within VisualDSP++

Also available for download
http://www.analog.com/processors/blackfin/technicalLibrary/manuals

Find third party RTOS options
http://dspcollaborative.analog.com/developers/DSP_ThirdParty_Search_Home.asp

For questions, use the “Ask a Question” button

