The World Leader in High Performance Signal Processing Solutions

Rapid Development of a
Blackfin-based Video Application

Presented By:
Glen Ouellette

About this Module

This module discusses the rapid development process of a

Blackfin® Video application using readily available and fully
supported software and hardware modules.

It is recommended that users have some understanding of:
¢ Basic knowledge of software terminology
+ Experience in embedded systems
+ Blackfin System Services and Device Drivers

ANALOG
DEVICES

Module Outline

+ Video-In
e Refresher on Device Driver
e Video Capture using ADV7183B Video Decoder

+ Video-Out
e Video Display using ADV7179 Video Encoder

+Video Compression
e Overview of MJPEG offering
e Encoding Video Data

+ USB
e Blackfin USB-LAN EZ-Extender
e Blackfin-Host data transfer over USB 2.0

+ Rapid Develeopment of a MIPEG Encode
3 A oevices

Outline of Video-In Sub-module

¢ A short Device Driver refresher

+ Simple Video Capture using ADV7183B Video Decoder

4 nDEWGES

Device Driver Refresher

¢ Standardized API
e User interface is the same across all device drivers

+Independent of driver
e Allows buffers to be passed from driver to driver

+Independent of processor
e Does not require change when moving from BF561 to BF537
+ Device Drivers are Totally Independent

+ User Application provides buffers to device driver
e Provided to driver via adi_dev_Read() or adi_dev_Write()
+Inbound buffers — Filled with data received from the device
+ Outbound buffers — Contain data to send out through the device

S nDEWGES

+ Application involvement
e Initialize services

¢+ Independent Device drivers manage their own set of system
services

e Drivers call into system services as required
+Video In Device Driver (e.g. ADV7183B)

e Calls into DMA Manager \
e Calls into Interrupt Manager [Application

e Calls into Timer Control t 1 v v

+ Calls into DCB ot | | [e

USB
Device Driver

[System Services

6 EDEW::ES

Additional Information on Device Drivers

+ Device Drivers and System Services Manual for Blackfin
Processors
—http://www.analog.com/processors/manuals

¢+ Device Drivers and System Services Addendum (Sept 2005)
—ftp://ftp.analog.com/pub/tools/patches/Blackfin/VDSP++4.0/

7 EDEW::ES

Video-In Data Flows

+ Video Decoder is configured to accept source input

e NTSC or PAL

e Example: ADV7183B with NTSC input

¢ Hardware

e ADSP-BF561 EZ-Kit (Silicon Revision 0.3 or higher)
+ Has onboard ADV7183B Video Decoder

+ ADV7183B Device Driver provided with VisualDSP++

e Others

R

Video Source

. ADSP-BF561

ADV7183B
Decoder

: Video Fram
1
Active Video
2
Active Video
1
1
1
1

Blanking

Field

Blanking

Field

Blanking

Video Frame Stored in SDRAM

nDEWC:ES

Double Buffering

+ Double Buffering is typical in Video Applications

e Benefit

+ Pass data into a single frame while processing/displaying data elements of a

previously filled frame
+ Avoids over writing unprocessed pixels/frames

e Often Multiple Buffering (6 or more)

Fmm e = =
|
1

ADSP-BF561

If_T -=_-T;-Tf] _> ADV7183B

. Decoder
Video Source

0ldd

Video_Frames|[0]

Blanking

Field 1
Active Video

Blanking

Field 2
Active Video

Blanking

Video_Frames|[1]

Blanking

Field 1
Active Video

Blanking

Field 2
Active Video

Blanking

I[Process >

ID[Prosese>

nDE\ﬂGES

. F - .'! i - [Y "
i 0 e [4 M }'"" ! Lapy 4
TS Mdgdmas: ' C5CHE N e adl-

Dataflow Method: Chaining with Loopback

+ Chaining with Loopback

e Device driver automatically loops back to the first buffer after the
last buffer in the chain is processed

e Application doesn’t need to resupply buffers
+ Lower overhead
+ Device driver never “starves” for data

|ADSP-BF561

Video Frames|[0]
Blanking

Field 1
Active Vided

Blanking

Field 2
pctive Vided

| Blanking

Video_Frames|[1]
Blanking —pVideo_Frames[0] —Video_Frames[1]

Field 1
IActive Vided

Blanking

Field 2
|Active Vided

| Blanking

% * ADV7183B -
= e Decoder

Oldd

10 I] DEVICES

Video-In Programming Sequence

+ Initialize System Services

+ Good practice to reset Video Decoder

e On Blackfin EZ-Kits, ADV7183B Reset is controlled via
Programmable Flag

+ Open ADV7183B Device Driver
e ‘AD7183DriverHandle’

e Configure for Inbound traffic from ADV7183B to Video Buffer
e PPl _Callback In

ezErrorCheck(adi_dev_Open(DeviceManagerHandle,
&ADIAD7183EntryPoint, /I pdd entry point
0, /I device instance
NULL, /I client handle callback identifier
&AD7183DriverHandle, /I DevMgr handle for this device
ADI_DEV_DIRECTION_INBOUND,// data direction for this device
DMAManagerHandle, /I handle to DmaMgr for this device
DCBManagerHandle, /I handle to deferred callback service
PPI_Callback_In)); /I deferred callback
[rrrrkkikk open AD7183 via PPIO ek k|
ezErrorCheck(adi_dev_Control(AD7183DriverHandle, ADI_AD7183_CMD_OPEN_PPI, (void *)0));

11 nDEWGES

/ ******** ADV7183 Inbound Buffers ****************** /
In1_Buffer2D.Data = Video_Frames[0];
In1_Buffer2D.ElementWidth = sizeof(ul16);

In1_Buffer2D.XCour_1t = (1716/2);
+Allocate two 2D_Buffers e
e In1_Buffer2D, In2_Buffer2D AR ey
. In1_Buffer2D.pNext = &In2_Buffer2D;
¢ Pointer to the data
. . In2_Buffer2D.Data = Video_Frames[1];
o Video Frames[0] and Video Frames[1] | m2 Buferzp.Elementwidth = sizeof(u16);

In2_Buffer2D.XCount = (1716/2);

. 2_Buffer2D.XModify = 2;
¢Element width o
e 16-bit wide element In2_Buffer2D.YModify = 2;

In2_Buffer2D.CallbackParameter = 2;

QXC()unt, XMOdlfy, YCOunt, YMOdlfy In2_Buffer2D.pNext = NULL;
¢ ITU-R BT656 NTSC Video Frame

¢ Callback parameter
e For this example, ‘1’ indicates Video Frames[0] and ‘2’ indicates
Video_ Framel[1]
¢ pNext

e Pointer to the next Video_Frame buffer in the chain (NULL if the
last Video_Frame buffer in chain)

AMALDG
12 DEVICES

Then Enable Dataflow Sequence

+ Start Capturing Video Data from PPIO into Video Frames[0] and

Video_ Frame[1]

e adi_dev_Control(AD7183DriverHandle, ADI_DEV_CMD_SET_DATAFLOW, (void*)TRUE));

i - ’ ADV7183B
o | — .
L W atd Decoder

Blanking

Field 1
Active Video

Blanking

Field 2
Active Video

Blanking
Video_Frames[1]

r
|
1
| ADSP-BF561 Video_Frames|[0]
|
1
1
I
|
1

oldd

Blanking

Field 1
Active Video

Blanking

Field 2
Active Video

Blanking

13

nDE\ﬂGES

Programming Sequence for ADV/7183B

14

Application

Open ADV7183 driver for Inbound dataflow >
Configure ADV7183 driver for chained loopback, ITU-R BT656 mozb

Provide 2 frame buffers for driver to fill

Enable dataflow

ADV7183B Driver

DEVICES

— ~ ap - i
ih R s e [en ¢t RS Yg A= St 30w :
"N"“““““““““““N YO " Mppaie s /1] Vgl | WY Oy :.:"‘1:'!? : Wy a7 i} b,
= i] YA ¥ R Ch ., X 3 G

Outline for Video-Out Sub-module

+ Simple Video Display using ADV7179 Video Encoder

15

nDE\ﬂGES

/ L A [) S
WWWW mﬁ Vol " onggi '/ 05000 » NS

Video-Out Data Flows

+ Video Encoder is configured to drive display
e NTSC or PAL
e Example: ADV7179 connected to NTSC TV

+ Hardware

e ADSP-BF561 EZ-Kit (Silicon Revision 0.3 or higher)
+ Has onboard ADV7179 Video Encoder

+ ADV7179 Device Driver provided with VisualDSP++

1
1
Video_ Frames[0] I——C
Blanking ————
Field 1
Active Video -
||~ - ADVTL7S | s
Field 2 Encoder J
Active Video —
; R
Blanking "l-=h=..:| =
1
Video Frame St SDRAM X
|
1

16

Double Buffering

+ Double Buffering is typical in Video Applications

¢ Benefits

+Display a single frame while filling data elements of a previously

displayed filled frame

+ Avoids over displaying old pixels/frames

Video Frames|[0]
Blanking

Field 1

Active Video
II Blanking
Field 2
Active Video

Blanking

Video_Frames|[1]
Blanking
Field 1

Active Video
II Blanking
Field 2
Active Video

Blanking

ADSP-BF561

PPI1

ADV7179
Encoder

17

nDE\ﬂGES

. J‘ W 2 -:1.-' III-.I'!P |r £ - LY : - 1:‘ -:.!..' E s,

Dataflow Method: Chaining with Loopback

+ Chaining with Loopback

e Device driver automatically loops back to the first buffer after the
last buffer in the chain is processed

+ Application does not need to re-supply buffers
e Lower overhead
e Device driver never “starves” for data

:I_ gzl | ||

ADSP-BF561

Video_Frames|[0]
Blanking

eld 1
Active Video

Field2
Active Video

—— Video_Frame[0] — Video_Frame[1]

Video_Frames[1]
Blanking

eld 1
Active Video

eld 2
Active Video

18 D oevices

Video-Out Programming Seguence

+ Initialize System Services

Programmable Flag

+ Open ADV7179 Device Driver
e ‘AD7179DriverHandle’

e PPl _Callback Out

+ Good practice to reset Video Encoder
e On Blackfin EZ-Kits, ADV7179 Reset is controlled via

e Configure for Outbound traffic from Video Buffer to ADV7179

&ADIADV717xEntryPoint,
0,

NULL,
&AD7179DriverHandle,

DMAManagerHandle,
DCBManagerHandle,
PPI_Callback_Out));

ezErrorCheck(adi_dev_Open(DeviceManagerHandle,

/I Device Entry point

/I Device number

/I No client handle

/l Device manager handle address

ADI_DEV_DIRECTION_OUTBOUND, // Data Direction

/[l Handle to DMA Manager
/l Handle to callback manager
/I deferred callback

[rrrrrkRRk open AD7179 via PPI1

A

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER, (void*)1));

19

nDE\ﬂGES

Video-Out Programming Sequence — Cont’c

[rrxxeeees AD7179 Outbound Buffergrrxssss*

¢+ Allocate two 2D Buffers
e Outl Buffer2D, Out2_Buffer2D
+ Pointer to the data
e Video Frames[0] and Video_ Frames[1]
+ Element width
e 16-bit wide element
+ XCount, XModify, YCount, YModify

¢ ITU-R BT656 NTSC Video Frame = 1716 Bytes per line by 525 lines

per Frame
+ Callback parameter

e For this example, ‘1’ indicates Video _Frame[0] and ‘2’ indicates

Video_ Framel[1]
+ pNext

e Pointer to the next Video Frame buffer in the chain (NULL if the

last Video_Frame buffer in chain)

Outl Buffer2D.Data = Video_Frames[0];
Outl_Buffer2D.ElementWidth = sizeof(ul6);
Outl_Buffer2D.XCount = (1716/2);
Outl_Buffer2D.XModify = 2;
Outl_Buffer2D.YCount = 525;
Outl_Buffer2D.YModify = 2;

Outl Buffer2D.CallbackParameter = 1;
Outl Buffer2D.pNext = &0Out2_Buffer2D;

Out2_Buffer2D.Data = Video_Frames|[1];
Out2_Buffer2D.ElementWidth = sizeof(u16);
Out2_Buffer2D.XCount = (1716/2);
Out2_Buffer2D.XModify = 2;
Out2_Buffer2D.YCount = 525;
Out2_Buffer2D.YModify = 2;
Out2_Buffer2D.CallbackParameter = 2;
Out2_Buffer2D.pNext = NULL;

20

nDEWE:ES

Then Enable Dataflow Sequence

+ Start Displaying Video Data from Video Frames[0] and

Video_Frames[1] into PPI1

e adi_dev_Control(AD7179DriverHandle, ADI_DEV_CMD_SET_DATAFLOW, (void*)TRUE));

ADSP-BF561

Video_Frames|[0]
Blanking

Fidd 1
Active Video

Blanking

Field 2
Active Video

Blanking

Video_Frames[1]
Blanking

Field1
Active Video

Blanking

Field 2
Active Video

Blanking

ADV7179
Encoder

21

nDE\ﬂGES

Programming Sequence for ADV7179

22

Application

Open ADV7179 driver for Outbound dataflow >
Configure ADV7179 driver for chained loopback, ITU-R BT656 mozb

Provide 2 frame buffers for driver to send out >

Enable dataflow

ADV7179 Driver

ANALOG
DEVICES

+ Installed ADV7183B Device Driver
e Video Decoder is configured to accept source input

¢ Installed ADV7179 Device Driver
e Video Encoder is configured to drive display

¢ Independent Drivers, but can share Video Frame Buffers

Video Source

- - ADV7183B
J' Decoder

[T 5w ng I
Field 1 1
Active Video D,s 1
|| Blanki E 0/Qy
Field 2 p&
Active Video)
[1 Bl ng $0 o 7
Video_Frames[1] e :"} ADV7179 +
I T < Encoder
Field 1 @“ -
ActiveVideo \;(z 1
N EET g ~ A
Field 2 &
Active Video

1
1
N WCETT '
1
1
1

23 DEVICES

Recap: Rapid Development of Video Pass
Through

¢ Reuse Video Frame buffers to create Simple Video Pass
Through

e Only 1 Frame Delay between input and output

Quick Tips:
e Map video frames into different banks of SDRAM to avoid latencies

e Configure DMA traffic control to optimize unidirectional traffic and reduce SDRAM
bus turnaround penalties

24 D oevices

Recap: Beyond Pass Through - Video

Processing

+ Simple Video Pass Through is common
e E.g. Back-up Video Camera, Side-view Mirrors, Back seat monitor

¢ Often, Inbound Frames are processed/compressed by

software codecs

e E.g. Sobel Edge detectlon MJIPEG Encodlng MPEG Encoding

ADSP-BF561

Video_Frames[1]

Video Frames in SDRAM

MJIPEG
Encoder

=

25

nDE\ﬂGES

— ~ ap - i
if T A Pene Ny * - - E,".- e, Lonw i
"N"“““““““““““N VGl U M. |/ -f-".-'IE] N | A Wy :.:"‘1:'!? . Wy Ef i} I
- i] 0 ¥ R CY v e

Outline for Encoding Video Data Sub-
module

+ Overview of the MJPEG offering

+ Encoding Video Data

26

nDE\ﬂGES

U . (g ‘

Overview of the MJPEG offering

¢+ JPEG/MJPEG SDK includes stand alone Encoder and Decoder
Libraries

e http://www.analog.com/blackfin/codeExamples

e Access to all source code, except the actual encoder and decoder
algorithm (libraries provided)

e Examples based entirely on ADI's System Services and Device
Driver libraries

¢ Other Resources

e ITU-T, “Information Technology- Digital Compression and Coding
of Continuous-Tone Still Images- Requirements and Guidelines”,

e ADI, “JPEG Encoder Library Developer's Guide”
e ADI, “JPEG Decoder Library Developer's Guide”
e ADI, “MJIPEG AVI Library Developer’'s Guide”

27 unecha

MJPEG Encoding Video Data Basics

¢ An Inbound buffer is processed/compressed by MJPEG codec

e MJPEG Codec Encodes a 4:2:0 Video buffer comprised of Y, Cr, Cb
Buffers

Compressed
Video

Y
MJPEG]
Encoder

+ Memory DMA is often used to separate and down sample 4:2:2 interlaced
image to a progressive YCrCb 4:2:0 format

e Down sampling the Cr and Cb components by two in the vertical direction
e Callback typically initiates Memory DMA action

Video_Frames|[0]

|| Blanking

= O
| s> (NP) mm)
I Encoder
Actvevideo
| 1 _Blanking

4:2:2 Format

ompressed
4:2:0 Format Video

28

ANALOG
DEVICES

Initializing MJPEG Codec

Configure MJPEG Codec

JPEG_FRAME_WIDTH, JPEG_FRAME_HEIGHT, JPEG_QUALITYFACTOR,

etc.
Quality Compression
Horizontal Vertical Frames/Sec Factor Ratio Cycles/Pel [Mhz Required
176 144 30 60 10.3 53.89 41
176 144 30 40 13.1 49.08 37
640 480 30 60 14.0 43.68 403
640 480 30 40 19.2 38.7 357

*For more details and other benchmarks look into the documentation (Developer Guides) that comes with the software product brief for

JPEG/MJPEG SDK

Allocate the output streambuffer
StreamBuffer_Obj = JPEG_MemAlloc_NEW(3 * Input_Width *

Input_Height,I, MEM_TYPE_DATA);

Typical application would streaming output to local file system (i.e. fprintf) or remote

host file system.

Instantiate JPEG Encoder

|IJpegEnc = JPEG_Encoder_NEW(&lImageParam),

29

AMNALOG
DEVICES

Encode Video
Step 1: Wait for full YCrCb 4:2:0 Buffer

Step 2: Pass YCrCb 4:2:0 Buffer Pointer
JPEG_McuBuffer CONFIG(mcu_ex, MCU_POINTER_C1, (unsigned int)linputBuffer);

Step 3: Perform MJPEG Encode
JPEG_EncodeSequentiallmage(lJpegEnc, &NumBytes);

To encode next frame, go to Step 1

Video_Frames[0] Compressed Video

(contains multiple
frames of data)

|_|_Blanking
Field

|1 Blanking

Field 2
i e MJIPEG ‘ EI
Video_Frames[1] Encoder

3 1

© o
. O .
= B e
5»5%,..5‘

nnnnnnn

Without Double Buffering, frame being encoded is also being
overwritten with new data — result is corrupted image

30 DEVICES

: _’ 1::::‘“-.. - r-;._- i I I.-I_.I-Ihl r. -'1."' .- “?‘. ._ '“"l :.J:..._..:_ I-_':.! 5
TS K H--'.-_.n,g"ﬂ ar » j:‘ "‘ | S et &

Encode YCrCb 4:2:0 Frame with Double
Buffering

+ To encode multiple frames, double buffering is used

e Ensures previous frame which is being encoded isn’t corrupted
with next frame data

ADSP-BF561

Video_Frames[0]

&

Compressed Video
(contains multiple

frames of data)
MJPEG - EI
Encoder

= — ' A
- T F ADC
. i

Video Source

Blanking

Video Frames in SDRAM

31 unE'ﬂGES

3 - r . .:1 s S T . \h P
"“‘““““““““““““ GO oaine, (Coghe » PR ST U

Outline for USB Sub-module

¢Blackfin USB-LAN EZ-Extender

+Simple Blackfin-Host Data Transfers over USB 2.0

32

nDE\ﬂGES

'~ 2L J i -: / M SN\ Wi S ~
-f.lf fl' f_.lr _-._ * — |f'.|'f' Ay -_ - "I_ ‘LU_*.‘:!‘I‘ E: JL__ -"'.

Blackfin USB-LAN EZ-Extender Hardware

+Adds USB 2.0 High speed connectivity to Blackfin
e PLX NET2272 USB 2.0 High Speed Controller

+USB-LAN EZ-Extender plugs on to ADSP-BF533,
ADSP-BF537, and ADSP-BF561 EZ-KITs

33 DEVICES

Blackfin USB-LAN EZ-Extender Benchmarks

34

Processor OUT -> from IN <- to host
host MBytes/sec | MBytes/sec
BF533 20.0 25.1
BF537 20.3 25.0
BF561 16.3 20.0

¢ Test Conditions
e Using the provided host application, bulk host driver, and firmware

e Test system: P4 2.0 GHz, 768 MB RAM, USB 2.0 host controller,
WinXP Pro SP2, no other USB devices on the bus

e Measure on Windows and takes into account complete transaction
time from host application point of view

nDEWE:ES

Simple Blackfin-Host Transfers Via
NET2272 USB

¢+ Receive USB command block from the Host indicating what
function for Blackfin to perform

¢ Perform |0 Based on Command using File I/O or Stdio
e Upload Data payload to Host PC
e Download Data payload from Host PC

= Jyme
.- =¥
____________________________ -':.'l T i.‘
AAAAAAAAAA — |
! _':.-—-'.-..‘..-_.'_&E}; =/
: USB Commands ---__'_-__-__:__;__g:}._.g_ﬁ:k
2 USB
L
NET2272
Payload !
! Move Data Payload
Memory !
ANALOG

35 DEVICES

Basic Commands Overview

+ Application exchanges command blocks with the host
e Indicating what functions to perform

e Refer to USBCMD.h for default USBCB command block structure

Example:
typedef struct _USBCB /I USB command block
{
ULONG ulCommand; /I command to execute
ULONG ulData; /I generic data field OR 1st Parameter
ULONG ulCount; /I number of bytes to transfer OR 2nd Parameter
ULONG ulPar3; /I 3rd Parameter
ULONG ulPar4; /I 4th Parameter
} USBCB, *PUSBCB;
ANALOG
36 DEVICES

| :E?ir'E ' 3 j I‘.

Basic Comandsﬁ Uéag

¢ USBCMD.h also contains default Commands

enum _USB_COMMAND

{
NO_COMMAND, /I nothing to do here...
GET_FW_VERSION, /I get the firmware version
QUERY_SUPPORT, /I query for support
QUERY_REPLY, /I query reply
LOOPBACK, /I run loopback on the device
MEMORY_READ, /I read from specified memory on the device
MEMORY_WRITE, /' write to specified memory on the device
USBIO_START, /I run USB 1O on this device
USBIO_STOP, /I stop USB IO on this device
USBIO_OPEN, /I open file on host

I

¢ Once Command has been received, switch on the command
received

e switch(pusbcb->ulCommand)

Example:
switch(pusbcb->ulCommand)
{
case USBIO_START: Performlo(USB_DevHandle); break; /I perform 10 over USB
case MEMORY_READ: ReadMemory(USB_DevHandle, (u8*)pusbcb->ulData, pusbcb->ulCount); break; /l read memory
case MEMORY_WRITE: WriteMemory(USB_DevHandle, (u8*)pusbchb->ulData, pusbcb->ulCount); break; [/ write memory
default: exit(1); break; /I unsupported command
}

AMNALOG
37 DEVICES

Additional Inforamation on Blackfin USB

+ Hardware schematics and layout data available on ftp site
o ftp://ftp.analog.com/pub/tools/Hardware

+ Blackfin USB firmware
e Ships with latest VisualDSP++
e C language examples - loopback and 1O redirection
e C language NET2272 driver — bulk and isochronous versions

+Windows host application
e Ships with latest VisualDSP++
e C/C++ example built with Microsoft Visual Studio .NET

38 I] DEVICES

39

Rapid Development of a MJPEG
Video Encoder

ANALOG

B

Ve i

Rapid Development with Common
Components

¢ Video-In
¢ Video-Out

+ MJPEG Encoder

+ USB Host

ADV7183B
Decoder

ADSP-BF561 Video_Frames[0]
] B\mking

Field 1
Active Video

|1 Blanking

| Biarking
Field2
Active Video

| 1 _Blanking
Video Frames in SDRAM

Compressed Video
(contains multiple
frames of data)

1
1
1
1
1
1
Field2
Active Video - -
| 1 _Blanking
-
Video_FramesJ[1] E ADV7179
| | Blaking] Encoder
Field 1 -—
Active Video ——
1
1
1
1
1
1
1
1
1
1
1
1

USB Commands
y ALFEE EI : aUSB
Encoder
NET2272

_ EBIU

1 Move Data Payload

40

nDE\ﬂGES

Setup MIPEG
SOftware F I OW / Parametersand
OPEN remotefile
(*MJIPEG_Encode.c’)

v ADV71783B

Setup System : :
: i Setup Video Devices Device Driver
Services (‘main.c’) ADV7179
ADV7183B and ADV7179 - Device Driver
l (*MJIPEG_Encode.c’)
- NET2272
Device Driver
Setup NET 2272

Device (‘main.c’)

Press SW6 on
EZ-KIT to START?
(‘MJPEG_Encode.c’)

SW6 is arbitrary. For example, could
be motion activated sensors which
kicks off MJPEG encoding

NO

MJPEG Encode Video

Frames asthey become MJPEG
available LIBRARY
(‘MJPEG_Encode.c’)
Identify MJIPEG ¢
Coding_Algorithm and Perform 1O of
Coding_Action (‘main.c’) compressed MJPEG
image data over USB
l (‘MJIPEG_Encode.c’)
Perform MJPEG action
and send Encoded image
over USB — Press SW6 on o
‘main EZ-KIT to STOP?
(man.c) (‘MJPEG_Encode.c’
]
CLOSE remotefile
41 (‘MJIPEG_Encode.c’) n [EIEAH#]%

What’s Required

+ Hardware
e ADSP-BF561 EZ-Kit (Silicon Revision 0.3 or higher)
e ADSP-USB_EZ LAN Extender Card
o PC

+ Running WinXP

+ Native USB2.0 port is best
—If you do not have, use a PCMCIA plug-in card. Transfer rate will degrade by ~30%

e DVD player (NTSC) for input
e Display (NTSC) for output
¢+ Toolset
e VisualDSP++ 4.0 with December 2005 update and Emulator

o If you don'’t want to recompile, use the provided *.dxe executable or burn the
provided *.Idr image into flash memory

¢ Software

o ZIP file
e Posted with this presentation

AMNALOG
42 DEVICES

Installation [1/4]

+ Copy or extract the Software into a directory on your hard-

disk (let’s call it “ROOT” directory)
¢ Connect Extender Card onto ADSP-BF561 EZ-kit

¢ Connect USB2.0 port on PC to USB2.0 port ON THE
EXTENDER CARD

+ Set DIP switches according to table on next Slide

43

ANALOG
DEVICES

~— . 24 J f
L U

Installation [2/4]

Setting for this demo

EZkit DIP switches

SW3 All off except #6
SW9 All off except #1 and #6
SW2 All off

SW1 All off

Extender card DIP switches

Sw1i

All on except #4

SW2

All on except #1

44

ANALOG
DEVICES

Hardware System Overview (MJPEG

Encoder)

Simple Video Pass Through

- - 4ADV71838
L= K

— e P

BF561

(MJPEG Encoder)

IS

ADV7179

|

USB

NET2272 |:|

EZ-USB EXTENDER

1IX-73 19549-dSAV

/

Stack EZ-USB Extender onto
ADSP-BF561 EZ-KIT

45

|
L

' :_1

—
| K

I
——

USB 2.0 to Host PC
- Compressed Video flows from Blackfin to
Host PC

- —L =
————FEEA

[:__:L_

-* AVI files get stored to local hard drive

ANALOG
DEVICES

Installation [3/4]

Connect the NTSC display to the “Video Out” Connector J6
on ADSP-BF561 EZ-Kit

Connect the NTSC DVD player to the “Video In” Connector J6
on ADSP-BF561 EZ-Kit

Power DVD Player and Display
WVideo Out

J6 on ADSP-

505
000
|

Video In

46

ANALOG
DEVICES

Installation [4/4]

¢ Power the EZ-Kit
¢ Start VisualDSP++

¢+ Load the Image File into flash memory
e Use VisualDSP’s “flash programming tool”
e Image file is “ROOT\codec_blkfn\mjpeg _app\BF561\bin

¢ Exit VisualDSP++ and reset the EZ-kit

+Windows should now detect a new USB Device
e Follow the prompts to install the device driver
e Specify the path to the device driver

e Device Driver is located in “ROOT\codec_host\hostdriver”
directory
e This step needs to be done only once
e Windows will remember device driver next time

47

nDE\ﬂGES

USAGE [1/3] — General

+ Open a DOS prompt Terminal on your PC
+ Generally under Start->All Programs->Accessories
+ Change Directory to “ROOT\codec_host\hostapp” directory

+With DOS'’s “cd” command (if necessary, switch to the hard-disk drive
by typing “C:”)

+The “hostapp.exe” application is the main control for the
Demo Application that is running on the DSP.

+ A few tests:
+ Type “hostapp —h” and press “enter” - what happens?
+ Type “hostapp —a” - will tell you if and how many DSPs are connected
+ Type “hostapp —v” - more information about the application

¢ If the “hostapp” detects a device, you are ready to proceed!

48 DEVICES

USAGE [2/3] - General

A few general explanations:

e Open an Explorer Window at

e “ROOT\images”
—Call this the “work directory”

¢ “ROOT\images\MIPEG”
— Target directory where encoded MJPEG *.AVI files will be stored

The application uses File I/0O to upload Payload to the
Host PC
e DISPLAYs information about the encoding/decoding process
e Follow instructions on the terminal CAREFULLY

e DO NOT TYPE in the terminal unless instructed to

e Accidentally press a key at the wrong time will abort the program. Just
press the reset button on the EZ-kit

49 nDEWGES

BN
H* Lnf‘?'

USAGE [3/3] - MJPEG ENCODER

+ Open the specification file in the work directory
+ mjpeg_encoder_spec.txt

+ Each line specifies atarget MJPEG (*.avi) file to be encoded from a Video source
+ Type the name: for instance mymovie
+ Type the size (Horizontal Vertical): for instance 320 240
+ Type the encoding quality factor (O [least] — 100 [max])

+ Repeat for as many recordings/files you like to take
Example: DISPLAY_MPEG_TEST1 352 288 60
DISPLAY_MPEG_TEST3 640 480 70

¢ Save the file

¢ Run ENCODER from the Host PC terminal:
+ Type “hostapp -m e” - Sets the DSP application to (m)jpeg (e)ncoding
+ Type “hostapp —u” - Starts encoder application
e NOW (as instructed) press button on the EZ-kit
+ Press to start recording
+ Press to stop recording
+ Press ENTER on the keyboard to move to the next file
+ Repeat for each file you specified in the steps above

+ Play the files !
e Find files specified above in MJPEG directory in the work directory
e Play the files by double-clicking on them

50 nDEWGES

Additional Information

+ Blackfin USB firmware
e Ships with latest VisualDSP++
e C language examples - loopback and IO redirection
e C language NET2272 driver — bulk and isochronous versions

+Windows host application
e Ships with latest VisualDSP++
e C/C++ example built with Microsoft Visual Studio .NET

¢ For questions, click “Ask A Question” button or
send an email to Processor.support@analog.com

51 nDEWGES

