
The World Leader in High Performance Signal Processing Solutions

Rapid Development of a
Blackfin-based Video Application

Presented By:
Glen Ouellette

2

About this Module

This module discusses the rapid development process of a
Blackfin® Video application using readily available and fully
supported software and hardware modules.

It is recommended that users have some understanding of:
!Basic knowledge of software terminology
!Experience in embedded systems
!Blackfin System Services and Device Drivers

3

Module Outline

!Video-In
" Refresher on Device Driver
" Video Capture using ADV7183B Video Decoder

!Video-Out
" Video Display using ADV7179 Video Encoder

!Video Compression
" Overview of MJPEG offering
" Encoding Video Data

!USB
" Blackfin USB-LAN EZ-Extender
" Blackfin-Host data transfer over USB 2.0

!Rapid Develeopment of a MJPEG Encode

4

Outline of Video-In Sub-module

!A short Device Driver refresher

!Simple Video Capture using ADV7183B Video Decoder

5

Device Driver Refresher

!Standardized API
" User interface is the same across all device drivers

!Independent of driver
" Allows buffers to be passed from driver to driver

!Independent of processor
" Does not require change when moving from BF561 to BF537

!Device Drivers are Totally Independent
!User Application provides buffers to device driver

" Provided to driver via adi_dev_Read() or adi_dev_Write()
!Inbound buffers – Filled with data received from the device
!Outbound buffers – Contain data to send out through the device

6

!Application involvement
" Initialize services

! Independent Device drivers manage their own set of system
services
" Drivers call into system services as required

!Video In Device Driver (e.g. ADV7183B)
" Calls into DMA Manager
" Calls into Interrupt Manager
" Calls into Timer Control
" Calls into DCB

Application

Video In
Device Driver

USB
Device Driver

Video Out
Device Driver

System Services

Device Driver Refresher (continued)

7

Additional Information on Device Drivers

!Device Drivers and System Services Manual for Blackfin
Processors

−http://www.analog.com/processors/manuals

!Device Drivers and System Services Addendum (Sept 2005)
− ftp://ftp.analog.com/pub/tools/patches/Blackfin/VDSP++4.0/

8

Video-In Data Flows

!Video Decoder is configured to accept source input
" NTSC or PAL
" Example: ADV7183B with NTSC input

!Hardware
" ADSP-BF561 EZ-Kit (Silicon Revision 0.3 or higher)

!Has onboard ADV7183B Video Decoder
!ADV7183B Device Driver provided with VisualDSP++

" Others

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

FILL FRAME 0

PPI0ADV7183B
Decoder

Process

Video Frame Stored in SDRAM

ADSP-BF561

Video Source

9

Double Buffering

!Double Buffering is typical in Video Applications
" Benefit

!Pass data into a single frame while processing/displaying data elements of a
previously filled frame

!Avoids over writing unprocessed pixels/frames
" Often Multiple Buffering (6 or more)

Video_Frames[0]

Video_Frames[1]

FILL FRAME 0

FILL FRAME 1

ADSP-BF561

PPI0ADV7183B
Decoder Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Process

Process

Video Source

10

Dataflow Method: Chaining with Loopback

!Chaining with Loopback
" Device driver automatically loops back to the first buffer after the

last buffer in the chain is processed
" Application doesn’t need to resupply buffers

!Lower overhead
!Device driver never “starves” for data

Video_Frames[0] Video_Frames[1]

Video_Frames[0]

Video_Frames[1]

FILL FRAME 0

FILL FRAME 1

ADSP-BF561

P
P

I0ADV7183B
Decoder Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

11

Video-In Programming Sequence

! Initialize System Services
!Good practice to reset Video Decoder

" On Blackfin EZ-Kits, ADV7183B Reset is controlled via
Programmable Flag

!Open ADV7183B Device Driver
" ‘AD7183DriverHandle’
" Configure for Inbound traffic from ADV7183B to Video Buffer
" PPI_Callback_In

ezErrorCheck(adi_dev_Open(DeviceManagerHandle,
&ADIAD7183EntryPoint, // pdd entry point
0, // device instance
NULL, // client handle callback identifier
&AD7183DriverHandle, // DevMgr handle for this device
ADI_DEV_DIRECTION_INBOUND,// data direction for this device
DMAManagerHandle, // handle to DmaMgr for this device
DCBManagerHandle, // handle to deferred callback service
PPI_Callback_In)); // deferred callback

/********* open AD7183 via PPI0 **/
ezErrorCheck(adi_dev_Control(AD7183DriverHandle, ADI_AD7183_CMD_OPEN_PPI, (void *)0));

12

!Allocate two 2D_Buffers
" In1_Buffer2D, In2_Buffer2D

!Pointer to the data
" Video_Frames[0] and Video_Frames[1]

!Element width
" 16-bit wide element

!XCount, XModify, YCount, YModify
" ITU-R BT656 NTSC Video Frame

!Callback parameter
" For this example, ‘1’ indicates Video_Frames[0] and ‘2’ indicates

Video_Frame[1]
!pNext

" Pointer to the next Video_Frame buffer in the chain (NULL if the
last Video_Frame buffer in chain)

/******** ADV7183 Inbound Buffers******************/
In1_Buffer2D.Data = Video_Frames[0];
In1_Buffer2D.ElementWidth = sizeof(u16);
In1_Buffer2D.XCount = (1716/2);
In1_Buffer2D.XModify = 2;
In1_Buffer2D.YCount = 525;
In1_Buffer2D.YModify = 2;
In1_Buffer2D.CallbackParameter = 1;
In1_Buffer2D.pNext = &In2_Buffer2D;

In2_Buffer2D.Data = Video_Frames[1];
In2_Buffer2D.ElementWidth = sizeof(u16);
In2_Buffer2D.XCount = (1716/2);
In2_Buffer2D.XModify = 2;
In2_Buffer2D.YCount = 525;
In2_Buffer2D.YModify = 2;
In2_Buffer2D.CallbackParameter = 2;
In2_Buffer2D.pNext = NULL;

Video-In Programming Sequence (cont’d)

13

Then Enable Dataflow Sequence

! Start Capturing Video Data from PPI0 into Video_Frames[0] and
Video_Frame[1]
" adi_dev_Control(AD7183DriverHandle, ADI_DEV_CMD_SET_DATAFLOW, (void*)TRUE));

Video_Frames[0]

Video_Frames[1]

FILL FRAME 0

FILL FRAME 1
P

P
I0

ADSP-BF561

ADV7183B
Decoder

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

14

Programming Sequence for ADV7183B
A

pp
lic

at
io

n

Open ADV7183 driver for Inbound dataflow

Configure ADV7183 driver for chained loopback, ITU-R BT656 mode etc.

Enable dataflow

Driver makes callback when frame buffer is filled

Callback function provides next buffer for driver to fill

A
D

V7
18

3B
 D

riv
er

Provide 2 frame buffers for driver to fill

15

Outline for Video-Out Sub-module

!Simple Video Display using ADV7179 Video Encoder

16

Video-Out Data Flows

!Video Encoder is configured to drive display
" NTSC or PAL
" Example: ADV7179 connected to NTSC TV

!Hardware
" ADSP-BF561 EZ-Kit (Silicon Revision 0.3 or higher)

!Has onboard ADV7179 Video Encoder
!ADV7179 Device Driver provided with VisualDSP++

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Display FRAME 0 P
P

I1Processed

Video Frame Stored in SDRAM

ADSP-BF561

ADV7179
Encoder

17

Double Buffering

!Double Buffering is typical in Video Applications
!Benefits

!Display a single frame while filling data elements of a previously
displayed filled frame

!Avoids over displaying old pixels/frames

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]

Display FRAME 1

Display FRAME 0
P

P
I1

ADSP-BF561

Processed

Processed

ADV7179
Encoder

18

Dataflow Method: Chaining with Loopback

!Chaining with Loopback
" Device driver automatically loops back to the first buffer after the

last buffer in the chain is processed
!Application does not need to re-supply buffers

" Lower overhead
" Device driver never “starves” for data

Video_Frame[0] Video_Frame[1]

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]

Display FRAME 1

Display FRAME 0

P
PI

1

ADSP-BF561

ADV7179
Encoder

19

Video-Out Programming Sequence

! Initialize System Services
!Good practice to reset Video Encoder

" On Blackfin EZ-Kits, ADV7179 Reset is controlled via
Programmable Flag

!Open ADV7179 Device Driver
" ‘AD7179DriverHandle’
" Configure for Outbound traffic from Video Buffer to ADV7179
" PPI_Callback_Out

ezErrorCheck(adi_dev_Open(DeviceManagerHandle,
&ADIADV717xEntryPoint, // Device Entry point
0, // Device number
NULL, // No client handle
&AD7179DriverHandle, // Device manager handle address
ADI_DEV_DIRECTION_OUTBOUND, // Data Direction
DMAManagerHandle, // Handle to DMA Manager
DCBManagerHandle, // Handle to callback manager
PPI_Callback_Out)); // deferred callback

/********* open AD7179 via PPI1 **\
ezErrorCheck(adi_dev_Control(AD7179DriverHandle, ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER, (void*)1));

20

!Allocate two 2D_Buffers
" Out1_Buffer2D, Out2_Buffer2D

!Pointer to the data
" Video_Frames[0] and Video_Frames[1]

!Element width
" 16-bit wide element

!XCount, XModify, YCount, YModify
" ITU-R BT656 NTSC Video Frame = 1716 Bytes per line by 525 lines

per Frame
!Callback parameter

" For this example, ‘1’ indicates Video_Frame[0] and ‘2’ indicates
Video_Frame[1]

!pNext
" Pointer to the next Video_Frame buffer in the chain (NULL if the

last Video_Frame buffer in chain)

Video-Out Programming Sequence – Cont’d
/******** AD7179 Outbound Buffers*******************/
Out1_Buffer2D.Data = Video_Frames[0];
Out1_Buffer2D.ElementWidth = sizeof(u16);
Out1_Buffer2D.XCount = (1716/2);
Out1_Buffer2D.XModify = 2;
Out1_Buffer2D.YCount = 525;
Out1_Buffer2D.YModify = 2;
Out1_Buffer2D.CallbackParameter = 1;
Out1_Buffer2D.pNext = &Out2_Buffer2D;

Out2_Buffer2D.Data = Video_Frames[1];
Out2_Buffer2D.ElementWidth = sizeof(u16);
Out2_Buffer2D.XCount = (1716/2);
Out2_Buffer2D.XModify = 2;
Out2_Buffer2D.YCount = 525;
Out2_Buffer2D.YModify = 2;
Out2_Buffer2D.CallbackParameter = 2;
Out2_Buffer2D.pNext = NULL;

21

Then Enable Dataflow Sequence

! Start Displaying Video Data from Video_Frames[0] and
Video_Frames[1] into PPI1
" adi_dev_Control(AD7179DriverHandle, ADI_DEV_CMD_SET_DATAFLOW, (void*)TRUE));

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]

Display FRAME 1

Display FRAME 0

P
P

I1

ADSP-BF561

ADV7179
Encoder

22

Programming Sequence for ADV7179
A

pp
lic

at
io

n

Open ADV7179 driver for Outbound dataflow

Configure ADV7179 driver for chained loopback, ITU-R BT656 mode etc.

Enable dataflow

Driver makes callback when frame buffer has been sent out

Callback function provides next buffer for driver to send out

A
D

V7
17

9
D

riv
erProvide 2 frame buffers for driver to send out

23

Recap: Video-In and Video-Out

! Installed ADV7183B Device Driver
" Video Decoder is configured to accept source input

! Installed ADV7179 Device Driver
" Video Encoder is configured to drive display

! Independent Drivers, but can share Video Frame Buffers

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]
FILL FRAME 0

FILL FRAME 1

P
PI0

ADV7183B
Decoder

ADSP-BF561

Video Source

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]

Display FRAME 1

Display FRAME 0

P
PI

1

ADSP-BF561

ADV7179
Encoder

24

Recap: Rapid Development of Video Pass
Through

! Reuse Video Frame buffers to create Simple Video Pass
Through
" Only 1 Frame Delay between input and output

Quick Tips:
" Map video frames into different banks of SDRAM to avoid latencies
" Configure DMA traffic control to optimize unidirectional traffic and reduce SDRAM

bus turnaround penalties

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]
FILL FRAME 0

FILL FRAME 1

P
PI0ADV7183B

Decoder

ADSP-BF561

Display FRAME 1

Display FRAME 0

P
PI

1

ADV7179
Encoder

Video Frames in SDRAM

25

Recap: Beyond Pass Through - Video
Processing
!Simple Video Pass Through is common

" E.g. Back-up Video Camera, Side-view Mirrors, Back seat monitor
!Often, Inbound Frames are processed/compressed by

software codecs
" E.g. Sobel Edge detection, MJPEG Encoding, MPEG Encoding

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]
FILL FRAME 0

FILL FRAME 1

P
PI0ADV7183B

Decoder

ADSP-BF561

Display FRAME 1

Display FRAME 0

P
PI

1

ADV7179
Encoder

Video Frames in SDRAM

MJPEG
Encoder

Memory

Compressed
Video

26

Outline for Encoding Video Data Sub-
module
!Overview of the MJPEG offering

!Encoding Video Data

27

Overview of the MJPEG offering

! JPEG/MJPEG SDK includes stand alone Encoder and Decoder
Libraries
" http://www.analog.com/blackfin/codeExamples
" Access to all source code, except the actual encoder and decoder

algorithm (libraries provided)
" Examples based entirely on ADI’s System Services and Device

Driver libraries
! Other Resources

" ITU-T, “Information Technology- Digital Compression and Coding
of Continuous-Tone Still Images- Requirements and Guidelines”,

" ADI, “JPEG Encoder Library Developer's Guide”
" ADI, “JPEG Decoder Library Developer's Guide”
" ADI, “MJPEG AVI Library Developer’s Guide”

28

MJPEG Encoding Video Data Basics

! An Inbound buffer is processed/compressed by MJPEG codec
" MJPEG Codec Encodes a 4:2:0 Video buffer comprised of Y, Cr, Cb

Buffers

! Memory DMA is often used to separate and down sample 4:2:2 interlaced
image to a progressive YCrCb 4:2:0 format
" Down sampling the Cr and Cb components by two in the vertical direction
" Callback typically initiates Memory DMA action

MJPEG
Encoder

Compressed
Video

Y

Cr Cb

Y

Cr Cb

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

MemoryDMA Y/Cr/Cb

4:2:2 Format 4:2:0 Format

MJPEG
Encoder

Compressed
Video

29

Initializing MJPEG Codec

!Configure MJPEG Codec
" JPEG_FRAME_WIDTH, JPEG_FRAME_HEIGHT, JPEG_QUALITYFACTOR,

etc.

*For more details and other benchmarks look into the documentation (Developer Guides) that comes with the software product brief for
JPEG/MJPEG SDK

!Allocate the output streambuffer
" StreamBuffer_Obj = JPEG_MemAlloc_NEW(3 * Input_Width *

Input_Height,1,MEM_TYPE_DATA);
! Typical application would streaming output to local file system (i.e. fprintf) or remote

host file system.
! Instantiate JPEG Encoder

" lJpegEnc = JPEG_Encoder_NEW(&lImageParam);

Horizontal Vertical Frames/Sec
Quality
Factor

Compression
Ratio Cycles/Pel Mhz Required

176 144 30 60 10.3 53.89 41
176 144 30 40 13.1 49.08 37
640 480 30 60 14.0 43.68 403
640 480 30 40 19.2 38.7 357

30

Encode Video
! Step 1: Wait for full YCrCb 4:2:0 Buffer

! Step 2: Pass YCrCb 4:2:0 Buffer Pointer
" JPEG_McuBuffer_CONFIG(mcu_ex, MCU_POINTER_C1, (unsigned int)lInputBuffer);

! Step 3: Perform MJPEG Encode
" JPEG_EncodeSequentialImage(lJpegEnc, &NumBytes);

! To encode next frame, go to Step 1

! Without Double Buffering, frame being encoded is also being
overwritten with new data – result is corrupted image

MJPEG
Encoder

Y

Cr Cb

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]

MemoryDMA Y/Cr/C
b

MemoryDMA Y/Cr/Cb

4:2:2 Video Frames
in SDRAM

Compressed Video
(contains multiple

frames of data)

YCrCb 4:2:0
Buffer

31

Encode YCrCb 4:2:0 Frame with Double
Buffering
!To encode multiple frames, double buffering is used

" Ensures previous frame which is being encoded isn’t corrupted
with next frame data

P
PI0ADV7183B

ADC

ADSP-BF561

MJPEG
Encoder

Compressed Video
(contains multiple

frames of data)
Y

Cr Cb

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]

Memory DMA Y/Cr/Cb

Memory DMA Y/Cr/Cb

Video Frames in SDRAM

Y

Cr Cb

Encode Frame1

Encode Frame0
FILL FRAME 0

FILL FRAME 1
Video Source

32

Outline for USB Sub-module

!Blackfin USB-LAN EZ-Extender

!Simple Blackfin-Host Data Transfers over USB 2.0

33

Blackfin USB-LAN EZ-Extender Hardware

!Adds USB 2.0 High speed connectivity to Blackfin
" PLX NET2272 USB 2.0 High Speed Controller

!USB-LAN EZ-Extender plugs on to ADSP-BF533,
ADSP-BF537, and ADSP-BF561 EZ-KITs

34

Blackfin USB-LAN EZ-Extender Benchmarks

! Test Conditions
" Using the provided host application, bulk host driver, and firmware

" Test system: P4 2.0 GHz, 768 MB RAM, USB 2.0 host controller,
WinXP Pro SP2, no other USB devices on the bus

" Measure on Windows and takes into account complete transaction
time from host application point of view

20.016.3BF561

25.020.3BF537

25.120.0BF533

IN <- to host
MBytes/sec

OUT -> from
host MBytes/sec

Processor

35

Simple Blackfin-Host Transfers Via
NET2272 USB
!Receive USB command block from the Host indicating what

function for Blackfin to perform

!Perform IO Based on Command using File I/O or Stdio
" Upload Data payload to Host PC
" Download Data payload from Host PC

Payload

USB
NET2272

USB Commands

Move Data Payload

E
B

IU

Memory

ADSP-BF561

36

Basic Commands Overview

! Application exchanges command blocks with the host
" Indicating what functions to perform
" Refer to USBCMD.h for default USBCB command block structure

Example:
typedef struct _USBCB // USB command block
{

ULONG ulCommand; // command to execute
ULONG ulData; // generic data field OR 1st Parameter
ULONG ulCount; // number of bytes to transfer OR 2nd Parameter
ULONG ulPar3; // 3rd Parameter
ULONG ulPar4; // 4th Parameter

} USBCB, *PUSBCB;

37

Basic Commands Usage

! USBCMD.h also contains default Commands

! Once Command has been received, switch on the command
received
" switch(pusbcb->ulCommand)

Example:
switch(pusbcb->ulCommand)
{

case USBIO_START: PerformIo(USB_DevHandle); break; // perform IO over USB
case MEMORY_READ: ReadMemory(USB_DevHandle, (u8*)pusbcb->ulData, pusbcb->ulCount); break; // read memory
case MEMORY_WRITE: WriteMemory(USB_DevHandle, (u8*)pusbcb->ulData, pusbcb->ulCount); break; // write memory
default: exit(1); break; // unsupported command

}

enum _USB_COMMAND
{

NO_COMMAND, // nothing to do here...
GET_FW_VERSION, // get the firmware version
QUERY_SUPPORT, // query for support
QUERY_REPLY, // query reply
LOOPBACK, // run loopback on the device
MEMORY_READ, // read from specified memory on the device
MEMORY_WRITE, // write to specified memory on the device
USBIO_START, // run USB IO on this device
USBIO_STOP, // stop USB IO on this device
USBIO_OPEN, // open file on host
…

};

38

Additional Inforamation on Blackfin USB

!Hardware schematics and layout data available on ftp site
" ftp://ftp.analog.com/pub/tools/Hardware

!Blackfin USB firmware
" Ships with latest VisualDSP++
" C language examples - loopback and IO redirection
" C language NET2272 driver – bulk and isochronous versions

!Windows host application
" Ships with latest VisualDSP++
" C/C++ example built with Microsoft Visual Studio .NET

39

Rapid Development of a MJPEG
Video Encoder

40

Rapid Development with Common
Components
!Video-In
!Video-Out
!MJPEG Encoder
!USB Host

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Blanking

Field 1
Active Video

Blanking

Blanking

Field 2
Active Video

Video_Frames[0]

Video_Frames[1]

Display FRAME 1

Display FRAME 0

P
PI

1

ADV7179
Encoder

Video Frames in SDRAM

USB
NET2272

USB Commands

Move Data Payload

E
BI

U

MJPEG
Encoder

Memory

Y

Cr Cb

Y

Cr Cb

Compressed Video
(contains multiple

frames of data)

FILL FRAME 0

FILL FRAME 1

P
PI0ADV7183B

Decoder

ADSP-BF561

41

Software Flow

New USB
command?
(‘main.c’)

NO

Identify MJPEG
Coding_Algorithm and

Coding_Action (‘main.c’)

YES

Setup NET2272
Device (‘main.c’)

Setup System
Services (‘main.c’)

Perform MJPEG action
and send Encoded image

over USB
(‘main.c’)

Press SW6 on
EZ-KIT to START?
(‘MJPEG_Encode.c’)

NO

MJPEG Encode Video
Frames as they become

available
(‘MJPEG_Encode.c’)

YES

Perform IO of
compressed MJPEG
image data over USB
(‘MJPEG_Encode.c’)

Setup Video Devices
ADV7183B and ADV7179

(‘MJPEG_Encode.c’)

Press SW6 on
EZ-KIT to STOP?

(‘MJPEG_Encode.c’)

NO

YES

Setup MJPEG
Parameters and

OPEN remote file
(‘MJPEG_Encode.c’)

CLOSE remote file
(‘MJPEG_Encode.c’)

NET2272
Device Driver

ADV71783B
Device Driver

ADV7179
Device Driver

MJPEG
LIBRARY

SW6 is arbitrary. For example, could
be motion activated sensors which

kicks off MJPEG encoding

42

What’s Required
!Hardware

" ADSP-BF561 EZ-Kit (Silicon Revision 0.3 or higher)
" ADSP-USB_EZ_LAN Extender Card
" PC

!Running WinXP
!Native USB2.0 port is best

− If you do not have, use a PCMCIA plug-in card. Transfer rate will degrade by ~30%
" DVD player (NTSC) for input
" Display (NTSC) for output

!Toolset
" VisualDSP++ 4.0 with December 2005 update and Emulator

" If you don’t want to recompile, use the provided *.dxe executable or burn the
provided *.ldr image into flash memory

!Software
" ZIP file

" Posted with this presentation

43

Installation [1/4]

!Copy or extract the Software into a directory on your hard-
disk (let’s call it “ROOT” directory)

!Connect Extender Card onto ADSP-BF561 EZ-kit

!Connect USB2.0 port on PC to USB2.0 port ON THE
EXTENDER CARD

!Set DIP switches according to table on next Slide

44

Installation [2/4]

All on except #1SW2
All on except #4SW1

Extender card DIP switches
All offSW1
All offSW2

All off except #1 and #6SW9
All off except #6SW3

EZkit DIP switches

Setting for this demo

45

Hardware System Overview (MJPEG
Encoder)

BF561
(MJPEG Encoder)

ADV7179ADV7183B

USB
NET2272

USB 2.0 to Host PC
- Compressed Video flows from Blackfin to
Host PC

EZ-USB EXTENDER

-*.AVI files get stored to local hard drive

Simple Video Pass Through

Stack EZ-USB Extender onto
ADSP-BF561 EZ-KIT

A
D

SP-B
F561 EZ-K

IT

46

Installation [3/4]

!Connect the NTSC display to the “Video Out” Connector J6
on ADSP-BF561 EZ-Kit

!Connect the NTSC DVD player to the “Video In” Connector J6
on ADSP-BF561 EZ-Kit

!Power DVD Player and Display

J6 on ADSP-
BF561 EZ-Kit

47

Installation [4/4]

!Power the EZ-Kit
!Start VisualDSP++
!Load the Image File into flash memory

" Use VisualDSP’s “flash programming tool”
" Image file is “ROOT\codec_blkfn\jmjpeg_app\BF561\bin

!Exit VisualDSP++ and reset the EZ-kit

!Windows should now detect a new USB Device
" Follow the prompts to install the device driver

" Specify the path to the device driver
" Device Driver is located in “ROOT\codec_host\hostdriver”

directory
" This step needs to be done only once
" Windows will remember device driver next time

48

USAGE [1/3] – General
!Open a DOS prompt Terminal on your PC

!Generally under Start->All Programs->Accessories
!Change Directory to “ROOT\codec_host\hostapp” directory

!With DOS’s “cd” command (if necessary, switch to the hard-disk drive
by typing “C:”)

!The “hostapp.exe” application is the main control for the
Demo Application that is running on the DSP.

!A few tests:
!Type “hostapp –h” and press “enter” - what happens?
!Type “hostapp –a” - will tell you if and how many DSPs are connected
!Type “hostapp –v” - more information about the application

! If the “hostapp” detects a device, you are ready to proceed!

49

USAGE [2/3] - General

A few general explanations:
" Open an Explorer Window at

" “ROOT\images”
−Call this the “work directory”

" “ROOT\images\MJPEG”
− Target directory where encoded MJPEG *.AVI files will be stored

The application uses File I/O to upload Payload to the
Host PC
" DISPLAYs information about the encoding/decoding process
" Follow instructions on the terminal CAREFULLY

" DO NOT TYPE in the terminal unless instructed to
" Accidentally press a key at the wrong time will abort the program. Just

press the reset button on the EZ-kit

50

USAGE [3/3] – MJPEG ENCODER
! Open the specification file in the work directory

! mjpeg_encoder_spec.txt

! Each line specifies a target MJPEG (*.avi) file to be encoded from a Video source
! Type the name: for instance mymovie
! Type the size (Horizontal Vertical): for instance 320 240
! Type the encoding quality factor (0 [least] – 100 [max])

! Repeat for as many recordings/files you like to take
Example: DISPLAY_MPEG_TEST1 352 288 60

DISPLAY_MPEG_TEST3 640 480 70

! Save the file

! Run ENCODER from the Host PC terminal:
! Type “hostapp –m e” - Sets the DSP application to (m)jpeg (e)ncoding
! Type “hostapp –u” - Starts encoder application

" NOW (as instructed) press button on the EZ-kit
! Press to start recording
! Press to stop recording
! Press ENTER on the keyboard to move to the next file
! Repeat for each file you specified in the steps above

! Play the files !
" Find files specified above in MJPEG directory in the work directory
" Play the files by double-clicking on them

51

Additional Information

!Blackfin USB firmware
" Ships with latest VisualDSP++
" C language examples - loopback and IO redirection
" C language NET2272 driver – bulk and isochronous versions

!Windows host application
" Ships with latest VisualDSP++
" C/C++ example built with Microsoft Visual Studio .NET

!For questions, click “Ask A Question” button or
send an email to Processor.support@analog.com

