
The World Leader in High Performance Signal Processing Solutions

VisualAudio
Advanced Features

Presented by:
Paul Beckmann

Analog Devices CPSG

2

About this Module

This module provides advanced training on VisualAudio.
Examples and demonstrations will be based on the ADSP-
BF533 EZ-KIT. You will learn about:

Advanced tool features such as high and low-level variables, the
expression language, and presets.
How to use the external interface to control VisualAudio from
other applications, such as MATLAB.
The basics of writing audio modules.

Target Audience
Audio algorithm developers
Comfortable writing C code
Some familiarity with Blackfin processors and the VisualDSP++
development environment

3

Module Outline

VisualAudio Designer advanced features
High and low-level parameters
The expression language
Presets

Using the external interface
Writing custom audio modules
Conclusion

4

VisualAudio Designer
Advanced Features

5

High and Low-Level Module Variables

typedef struct {

AMF_Module b;

float ampSmoothing, ampTarget, b0;
float amp, state;

} AMF_ToneControlBass;

High-level variables appear on
a module’s inspector

Low-level (or render) variables
appear within the module’s
data structure

6

Expression Language

Inspector

Low-level parameters in audio
module structure

Expression
Language

High-level
variables

Expression language examples:

1. Convert from smoothing
time (msecs) to coefficient

2. Convert from dB to linear
units.

3. Convert a balance control
setting into 2 separate
gains

The expression language
converts between high-level
and low-level parameters

7

Presets

Convenient mechanism for managing audio
module parameter sets
Step 1 – Tune the system to a desired state

Inspectors
External interface

Step 2 – Capture the preset
Step 3 – Apply the preset from the Tool
Step 4 – Optionally compile the preset with
the application.
Presets are written in Intel hex format
Can be stored on host and downloaded to
the DSP
Typical uses

Dealing with multiple sample rates
Preserving default EQ settings
Making A/B comparisons to fine tune system
performance

8

Presets

Convenient mechanism for managing audio
module parameter sets
Step 1 – Tune the system to a desired state

Inspectors
External interface

Step 2 – Capture the preset
Step 3 – Apply the preset from the Tool
Step 4 – Optionally compile the preset with
the application.
Presets are written in Intel hex format
Can be stored on host and downloaded to
the DSP
Typical uses

Dealing with multiple sample rates
Preserving default EQ settings
Making A/B comparisons to fine tune system
performance

Inspectors

External Interface

9

Presets

Convenient mechanism for managing audio
module parameter sets
Step 1 – Tune the system to a desired state

Inspectors
External interface

Step 2 – Capture the preset
Step 3 – Apply the preset from the Tool
Step 4 – Optionally compile the preset with
the application.
Presets are written in Intel hex format
Can be stored on host and downloaded to
the DSP
Typical uses

Dealing with multiple sample rates
Preserving default EQ settings
Making A/B comparisons to fine tune system
performance

10

Presets

Convenient mechanism for managing audio
module parameter sets
Step 1 – Tune the system to a desired state

Inspectors
External interface

Step 2 – Capture the preset
Step 3 – Apply the preset from the Tool
Step 4 – Optionally compile the preset with
the application.
Presets are written in Intel hex format
Can be stored on host and downloaded to
the DSP
Typical uses

Dealing with multiple sample rates
Preserving default EQ settings
Making A/B comparisons to fine tune system
performance

11

Presets

Convenient mechanism for managing audio
module parameter sets
Step 1 – Tune the system to a desired state

Inspectors
External interface

Step 2 – Capture the preset
Step 3 – Apply the preset from the Tool
Step 4 – Optionally compile the preset with
the executable.
Presets are written in Intel hex format
Can be stored on the host and downloaded
to the DSP
Typical uses

Dealing with multiple sample rates
Preserving default EQ settings
Making A/B comparisons to fine tune system
performance

12

The External Interface

13

External Interface

Works in both Design Mode and Tuning Mode
Design mode module data structures
Tuning mode module data structures AND sent to the DSP in real-time

Capabilities
Manipulating audio module parameters
Basic control of the system (loading, saving, building, capturing presets, etc.) is
also supported
Advanced control (instantiating and wiring modules)
Exchanging audio data with the target processor.

Block-by-block
Non-real-time
Speed is determined by the speed of the tuning interface

Implemented as a local COM server (housed in an EXE)
Accessible by any COM compliant language/application (C/C++, Excel, VisualBasic,
etc.)
Total of 53 APIs supported
Prog-ID is ‘VisualAudioDesigner’

14

Uses of the External Interface

Creating custom audio module design functions
Creating custom GUIs

Control panels
Full or restricted functionality

Leveraging existing design tools and methodologies
Automating system design and tuning
Regression testing of audio modules and systems

15

Expression Language is Included

External Interface

Render variables in audio
module structure

Expression
Language

External applications can
access the high-level and
low-level render variables.

Changes to high-level
variables invoke the
expression language.

Low-level accesses bypass
the expression language
and manipulate DSP
variables directly.

Other Application

High-level
variables

16

MATLAB Interface Layer

Simplifies usage with
MATLAB
Each audio module appears
as a MATLAB object
Objects can be manipulated
as if they were MATLAB
structures

External Interface

Render variables in audio
module structure

Expression
Language

Meta-
variables

MATLAB Interface Layer

MATLAB scripts

17

Querying a Single Audio Module

Queries VisualAudio for information regarding this audio
module

Variables names
Data types
Sizes

Generates and returns a MATLAB object

>> S=va_module(‘VolumeFletcherMunson_S1');

18

Comparison with the Inspector

S =

smoothingTime: [100]
fmGain: [0]
lowFreq: [30]

lowQ: [1]

One-to-one correspondence between MATLAB
structure members and interface variables shown

on the inspector

19

Manipulating Module Parameters

Treat them as if they were standard MATLAB structures:
VolumeFletcherMunson_S1.smoothingTime=50;
VolumeFletcherMunson_S1.fmGain=-3;
VolumeFletcherMunson_S1.lowFreq=40;
VolumeFletcherMunson_S1.lowQ=1.1;

Often used to initialize parameters in a repeatable method
using a script file.

20

Accessing Low-Level Render Variables

The previous example demonstrated how to access the high-
level variables shown on the inspector.
To access low-level render variables in Tuning Mode, issue
the command:

va_module(‘VolumeFletcherMunson_S1’,0)

VolumeFletcherMunson_S1 =

ampSmoothing: [0.002081]
ampTarget: [1.000000]

lowAmpTarget: [1.000000]
b0: [0.996081]
b1: [-1.996061]

amp: [1.000000]
lowAmp: [1.000000]

aux_state1: [777.399841
-438.739838]

aux_state2: [-21.297104
177.371170]

21

Regression Testing Capabilities

COM Interface

External Application Platform operates in
“demand render
mode”

External application
generates data.

Audio passed block-
by-block through the
tuning interface.

External application
analyzes data for
correctness.

MATLAB examples
are provided.

22

MATLAB Testing API

Place platform into “demand render” mode
va_demandrender(‘begin’);

Send and receive individual blocks of data
DATA_OUT=va_demandrender(‘process’, DATA_IN)

DATA_IN=TickSize x NumberOfInputs
DATA_OUT=TickSize x NumberOfOutputs

Repeat for multiple blocks

Exit demand render mode and resume real-time
processing

va_demandrender(‘end’);

23

Place all modules into bypass mode except the treble tone
control
Generate input data in MATLAB

t=((0:2047)/48000).';
DATA_IN=chirp(t, 20, t(end), 24000, 'logarithmic', -90)*ones(1,2);

Process the data
va_demandrender(‘begin’);
DATA_OUT=va_demandrender(‘process’, DATA_IN);
va_demandrender(‘end’);

Tone Control Example

24

Tone Control Results

25

Writing Custom Audio Modules

26

Standard vs. Custom Modules

Standard modules are supplied with
VisualAudio
Custom modules are written by the
user
Standard and custom modules
appear on separate tabs within
VisualAudio Designer. This is the
only distinction between standard
and custom modules – no limitations
or cost overhead associated with
custom modules
Source code is provided for all
standard modules. This serves as a
starting point for creating custom
modules

27

3 Components of an Audio Module

A header file which contains the module’s run-time interface
and a description of the associated data structure
The module’s run-time function (“render function”). This can
be:

C code
ASM code
Object or library

An XML file that describes the module in detail to VisualAudio
Elements of its data structure
Inspector interface
Memory allocation rules

28

Instance Data Structure

Each instance of an audio module has an associated C data
structure
All data structures start with the same set of fields

These contain elements common to all audio modules
Describe the “base class” of the “object”

This is followed by module specific fields

29

AMF_ScalerSmoothed.h

Defines the data structure associated with the audio module

#include "AudioProcessing.h"

typedef struct
{

AMF_Module b;

// parameters
fract32 ampSmoothing;
fract32 oneOverTickSize;

// state
fract32 amp;

// parameters
fract16 ampTarget;

}
AMF_ScalerSmoothed;

Common headerCommon header

Module specific
variables

Module specific
variables

typedef nametypedef name

30

AMF_ScalerSmoothed.c – Render Function
(C example. Actual code is in ASM.)

SEG_MOD_FAST_CODE void AMF_ScalerSmoothed_Render(AMF_ScalerSmoothed * instance,
AMF_Signal ** buffers, int tickSize) {

int i;
fract32 amp = instance->amp;
fract16 ampTarget = instance->ampTarget;
fract32 ampSmoothing = instance->ampSmoothing;
AMF_Signal *in = buffers[0];
AMF_Signal *out = buffers[1];
fract32 diff, slew;

/* compute smoothing filter only once per tick, and derive a linear
* slew for the per-sample update */

diff = sub_fr1x32(mult_fr1x32x32NS(ampSmoothing, L_deposit_h(ampTarget)),
mult_fr1x32x32NS(ampSmoothing, amp));

instance->amp = add_fr1x32(amp, diff);
slew = mult_fr1x32x32NS(diff, instance->oneOverTickSize);

for (i=0; i<tickSize; i++) {
out[i] = mult_fr1x32x32NS(in[i], amp);
amp = add_fr1x32(amp, slew);

}
}

Same arguments passed to all
render functions:

Pointer to instance structure
Array of buffer pointers ordered
as inputs, outputs, and scratch
tickSize = block size

31

Class Structure Declaration

All audio modules of the same type share a single “Class Structure”
Describes the behavior of the module to VisualAudio’s run-time interface

Number of inputs and outputs
Mono input and mono output
Name of render function
Bypass behavior

Typically declared within the module’s C file
If the module’s render function is in assembly, there will be two files: an .ASM file
containing the render function, and a C file with the class structure declaration

AMF_ScalerSmoothed
Instance 1

AMF_ScalerSmoothed
Class Structure

Delay
Instance 1

Delay 2
Instance 2

Delay
Class Structure

AMF_ScalerSmoothed
Instance 2

AMF_ScalerSmoothed
Instance 2

32

AMF_ScalerSmoothed – Class Structure

SEG_MOD_SLOW_CONST const AMF_ModuleClass AMFClassScalerSmoothed =
{

/** Flags. */
0,

/** Reference to render function. */
(AMF_RenderFunction) AMF_ScalerSmoothed_Render,

/* Default bypass */
(void *)0,

/* Input descriptor - 1 input, and it is mono. */
1, 0,

/* Output descriptor - 1 output, and it is mono. */
1, 0,

};

33

Audio Module XML

Describes the audio module to VisualAudio Designer
Module name and palette location
Input and output pins
Compatible processors
Instance data structure
High-level variables and expressions
Memory allocation rules
Other usage rules

34

Conclusion

VisualAudio’s design features simplify the development
of advanced audio features

High and Low-level variables
Expression language
Presets

Open API’s allow VisualAudio’s capabilities to be
extended by

Interfacing to external COM compliant applications
Interfacing to MATLAB
Writing custom audio modules

35

For Additional Information

A free download is available at the VisualAudio product page
http://www.analog.com/en/prod/0,2877,VISUALAUDIO,00.html

Additional examples and tutorials can be found at the
VisualAudio Developer’s Web site:

www.visualaudiodeveloper.com

Specific technical questions can be sent to:
visualaudio.support@analog.com

Click the “Ask A Question” button

