

The World Leader in High Performance Signal Processing Solutions



# Introduction to VisualAudio

Presented by: Paul Beckmann Analog Devices CPSG



# **About this Module**

- This module gives an overview of VisualAudio, a tool for rapid development of audio processing software. Examples and demonstrations will be based on the ADSP-BF533 EZ-KIT. You will learn about:
  - The primary features of VisualAudio and how the tool can accelerate product development
  - How to design audio processing layouts using the graphical editor
  - The underlying DSP software architecture

#### Target Audience

- Embedded product developers
- Some experience with audio
- Some familiarity with Blackfin processors and the VisualDSP++ development environment
- A separate module aimed specifically at audio algorithm developers - discusses VisualAudio's advanced features in more detail





# **Module Outline**

### VisualAudio Overview

Live Demonstration

### • DSP Software Architecture

- Relationship to VisualDSP++
- The audio module library
- Real-time platforms

### Conclusion





# **VisualAudio Overview**



# What Is VisualAudio?

# A tool for streamlining audio product development

### Consists of:

- The VisualAudio Designer graphical audio processing design application
- Audio Module Library commonly used audio functions
- Example Platforms real-time frameworks with audio I/O

Designed for product development engineers
 Provides most of the standard software components found in audio products

Generates MIPs and memory optimized code



# Supports Both Blackfin and SHARC Processor Families from ADI

# Blackfin

- 2x16-bit SIMD fixed-point DSP (VisualAudio uses 32-bit fixed-point for all audio)
- Rich set of microcontroller features
- Full external memory interface

### SHARC

- 32-bit floating-point DSP with SIMD capabilities
- External memory support varies among processor versions
- Both architectures come in a variety of models with integrated audio peripherals
  - Serial ports
  - S/PDIF transceiver
  - Hardware sampling rate converters

 Both processor families are supported by similar platforms, and complementary sets of audio modules and decoders.



# **Blackfin vs. SHARC Selection Guide**

- The SHARC is ideal for products whose primary function is audio or if there is a significant amount of audio processing
  - Audio/video receivers
  - Professional audio systems
  - High-end automotive audio systems
- The Blackfin is ideal for products that have functions in addition to audio
  - Portable media players
  - Automotive head units & telematics
  - Networked media nodes
  - Mass market pro audio
  - Mid-end automotive amplifiers

 As a rule of thumb, the SHARC is 3 to 4 times as efficient as the Blackfin in processing audio, per MIP





**EZ-KIT Evaluation Hardware Supported by** VisualAudio

### ADSP-21262 EZ-KIT

- 2-in 8-out analog I/O
- 1 S/PDIF input
- ADSP-21364 EZ-KIT
  - 2-in 8-out analog I/O
  - S/PDIF input and output
- ADSP-21369 EZ-KIT
  - 2-in 8-out analog I/O
  - S/PDIF input
- Audio extender card is coming soon which provides 8-in and 16-out analog I/O

### ADSP-BF533 EZ-KIT

- 4-in 6-out analog I/O
- ADSP-BF537 EZ-KIT
  - 2-in 2-out analog I/O
- ADSP-BF537 EZ-KIT with audio extender card
  - 8-in 16-out analog I/O
  - S/PDIF input and output



# **Key Benefits**

### For product developers

- Provides a starting point and methodology for audio product development
- Reduces development time, cost, and risk
- Allows engineers to focus on *differentiating* their products rather than implementing standard features
- Provides access to audio IP in a consistent format
- For IP developers
  - Streamlines IP development
  - Serves as a demonstration platform
  - Provides a consistent format to deliver audio IP





### **Live Demo**

- Creating a New System
- Designing the Layout
- Generating Code
- Building the Executable
- Real-time Tuning



### **Demo Overview**

### Hardware Setup

- BF533 EZ-KIT
- HPUSB emulator (recommended, but you can use the built-in USB emulator)
- Line-level audio source
- Powered speakers

### Software Setup

- VisualAudio
- VisualDSP++

### Steps

- Create an audio processing design using the graphical editor
- Generate code
- Build and run the executable on the EZ-KIT
- Tune the system in real-time





# **Migrate to Your Target Hardware**

- Begin with a reference platform source code provided
- Write drivers for your target hardware
- Create a platform file that describes your hardware to VisualAudio
- Continue to use VisualAudio on your target hardware







## **DSP Software Architecture**



### **VisualAudio and VisualDSP++**

OWEr





# **Audio Module Library**

- Subroutines for processing PCM audio
   89/(94) "standard" modules provided in the current Blackfin/(SHARC) release:
  - Mixers
    Filters
    Delays
    Tone controls
    Basic math
    Faders / balance
    Volume controls
    Compressor
    Limiter
    Etc
- Optimized for SIMD execution
- Some have separate versions for mono and stereo inputs
- Source code provided
- Customers can write their own modules as well





### **Block Processing**

- Each audio module operates on a block of data rather than sample-by-sample
- The number of samples per block is fixed and is called the "TickSize"
- All modules operate at the same TickSize.
- The TickSize is adjustable through the User Interface
- Block processing is a natural fit for audio decoders which output blocks of data (e.g., Dolby Digital outputs 256 sample blocks)
- Block processing yields an efficient implementation



### **Example Computation 10<sup>th</sup> order IIR filter**





# **Audio Module Interconnections / Wires**





# **VisualAudio Platforms**

Lightweight interrupt driven real-time frameworks

### Platforms provide

- Double-buffered DMA-driven audio I/O
- An interface to VisualAudio generated audio processing
- A separate non-real-time control thread
- Tuning
- Communication with a host micro-controller (if any)
- Several application-specific variants
  - "Basic" General purpose, PCM I/O
  - AVR (for home theater products with decoders)
  - Automotive



### **"Basic" Platform**

- Targeted at PCM-based audio products without decoders
- Platform divided into
  - A common core framework
  - Platform specific drivers
- Double-buffered DMA-driven block-based audio I/O
- Layout executes at interrupt level
- Tuning, host communication and user control code execute at non-interrupt level







### **"AVR" Platform**



#### **User Control Code**



# **Platform / Layout Interface**





### Conclusion

- VisualAudio accelerates the development of embedded audio applications
- An intuitive graphical user interface allows audio processing to be easily designed and configured
- Supports both the Blackfin and SHARC families of processors and many different EZ-KIT development platforms
- Generates efficient code

A separate training module covers the VisualAudio environment in more depth

- Advanced user interface features
- Writing custom audio modules
- Interfacing to external design applications



# **For Additional Information**

A free download is available at the VisualAudio product page
 <u>http://www.analog.com/en/prod/0,2877,VISUALAUDIO,00.html</u>

 Additional examples and tutorials can be found at the VisualAudio Developer's Web site:

• www.visualaudiodeveloper.com

Specific technical questions can be sent to:

visualaudio.support@analog.com

Click the "Ask A Question" button

